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Abstract 

The goal of this project was to increase understanding of the discriminative power of friction 
ridge patterns using computational approaches. A three-pronged approach was taken: (i) 
a study of the fingerprints of twins using automatic fingerprint matching algorithms, (ii) 
modeling the probability distribution of fingerprints from which the probability of random 
correspondence of fingerprints is determined– this is the generative approach to individuality, 
and (iii) new algorithms for feature extraction and classification are used to determine error 
probabilities– this is the discriminative approach to individuality. The main conclusion of 
the twins’ study is that although friction ridge patterns of twins are more similar than in the 
general population, they are still discriminable. The twins’ findings strengthen the argument 
of fingerprint individuality. Taking the generative approach the individuality of a forensic 
modality can also be established by computing the probability of random correspondence 
of two pieces of evidence directly from the underlying probability distribution of evidence 
features. The distribution can be modeled as a mixture distribution whose parameters can 
be determined from a database of fingerprints. First a model consisting of only minutiae was 
considered and then expanded to include ridge information as well. It was found that the 
probability of random correspondence with ridges is much lower than with minutiae alone. 
These probabilities were quantified in terms of the available number of minutiae and ridge 
points. In the discriminative approach two new approaches to automatic fingerprint compar­
ison were developed: use of likelihood methods instead of ROC-based methods, and using 
ridge information in addition to minutiae in fingerprint comparison. Both discriminative 
studies point to improved performance particularly when there are fewer minutiae available 
in the input as in the case of latent prints. 
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Chapter 1 

Executive Summary 

The central focus of the project was to study the discriminability of friction ridge patterns 
using computational approaches. Computational approaches provide large scale testing and 
evaluation that are not feasible using manual approaches. They also provide a method for 
evaluating probabilities of interest. The approach was a three-pronged one: (i) a study of 
the fingerprints of twins using automatic fingerprint matching algorithms, (ii) determining 
the probability distribution of fingerprints using different feature sets which can then be used 
to determine the probability of random correspondence of fingerprints, and (iii) determining 
error rates of automatic fingerprint matching algorithms. There were two efforts focusing 
on the classification and feature extraction parts of discrimination: improving automatic 
fingerprint comparison using a likelihood based approach (instead of the standard receiver 
operating characteristics (ROC) approach), and use of ridge information in automatic fin­
gerprint comparison. 

1. Twin’s Study. The use of a cohort groups such as twins to study various physiological 
and behavioral characteristics is well-known. The data used in this study was of higher 
quality and quantity compared to previous limited such studies of fingerprints. The data 
set consisted of prints of predominantly young subjects– with 298 pairs of twins, whose ten 
prints were captured (by the International Association for Identification) using a live scan 
device. Fingerprint discriminability using level 1 and level 2 features were independently 
determined. The level 1 study was to visually classify, by humans, each fingerprint into one 
of six categories (right loop, left loop, whorl, arch, twin loop and tented arch). It was found 
that twins are much more likely (55%) to have similar level 1 classification when compared to 
to the general population of fingerprints (32%). The level 2 study was to compare minutiae 
(ridge endings and bifurcations) using a minutiae-based automatic fingerprint identification 
algorithm which provided match scores (0-350) for fingerprint pairs. Distributions of scores 
were computed for corresponding fingers of twins and non-twins. Five distributions of scores 
were computed: twins, non-twins, identical twins, fraternal twins and genuine scores for 
the same finger. Using statistical tests to compare distributions, the following inferences 
were made: twin pairs are different from genuine pairs, twins are different from non-twins, 
identical twins are the same as fraternal twins, and similarity of twins is different from 
similarity between arbitrary fingers. The main conclusion is that although friction ridge 
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patterns of twins are more similar than in the general population, they are still discriminable. 
The findings strengthen the argument of fingerprint individuality. 

2. Probability Distributions of Fingerprints. Generative models of pattern recog­
nition attempt to represent the distribution of observed quantitative features by learning 
parameters from a database. When the distributions are learnt and validated they can be 
used for several purposes, e.g., generate samples to evaluate algorithms, determine the prob­
ability of two random patterns being the same (thereby providing a measure of individuality 
for the modality), determine the uniqueness of a given pattern, etc. The joint probability of 
minutiae location, minutiae orientation and ridge point location and orientation was mod­
eled as a mixture distribution. The parameters of the distribution were estimated using a 
database of fingerprints. Given the distribution (model) several probabilities were evalu­
ated, principally the probability of random correspondence(PRC), which is the probability 
that two independently drawn samples have the same value. Given the PRC, the probability 
that given n fingerprints the probability that at least two among them have the same value 
can be directly computed. Finally, the probability that a specific fingerprint has a match, 
within a certain tolerance, with at least one among n can also be computed. Motivated by 
the fact that ridges have not been modeled in generative models, and using representative 
ridge points in fingerprint matching, ridge information was incorporated into the generative 
model by using the distribution for ridge point location and orientation. It was found that 
the PRC with ridges is much lower than with minutiae alone. As a consequence of this study 
a general mathematical approach to determining the degree of individuality of any forensic 
modality has been formulated. 

3. Error Rates of Fingerprint Comparison Algorithms. An alternative computa­
tional approach to evaluating discriminability is to evaluate error rates of fingerprint compar­
ison algorithms Two main components of any automatic fingerprint comparison algorithm 
are the features extracted and the method of classification. The error rates are dependent on 
these two choices. Two algorithm development tasks focusing on each of these components 
were undertaken and their error rates were evaluated: 

1.	 Use of likelihood methods. The use of likelihood methods was seen to improve 
fingerprint matching results when compared with traditional receiver operation char­
acteristics (ROC)-based methods. This improvement was particularly significant when 
there are few minutiae in the input image, as would be likely in the case of latent 
prints. 

2.	 Use of ridge features. Ridge information used in conjunction with minutiae was 
seen to improve performance over using minutiae alone. An algorithm was proposed 
to incorporate ridge information into existing minutiae-based algorithms without sig­
nificant degradation in speed. 
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Chapter 2 

Final Report Narrative 

2.1 Introduction 

The use of fingerprint evidence in the justice system has been based on two premises, that, 
(i) they do not change with time and (ii) they are unique for each individual. Until recently, 
fingerprint evidence has been accepted by the courts without question as a legitimate means 
of identification. However, after a series of rulings in United States courts, beginning with 
Daubert v Merrell Dow in 1993 [1] and particularly in USA vs Mitchell in 1999 [2], a need 
has been felt to scientifically test the premises stated above. While the first premise has 
been accepted, the second premise on individuality has been questioned. This latter is the 
subject of this investigation. 

This project is an effort to increase existing knowledge of the discriminatory power of 
fingerprints. Although there have been dozens of such studies in the past, the present effort 
is to use newly developed computational methods such as scanning technologies and machine 
learning methodologies to study the issues on a scale that was not possible earlier. 

The terms class characterization and individualization are commonly used in forensics. 
In addition terminology from the biometric domain, such as verification and identification 
are also present. Thus it is useful to first define these terms. Class-characterization is the 
narrowing down of the evidence into a sub-class within the forensic modality, e.g., ethnicity. 
Individualization is sometimes defined as the exclusion of all other sources for the given 
evidence. Verification is the determination of whether a given evidence is from a given 
source and is a binary decision. Identification is the determination of the best match of the 
evidence given a finite set of sources for that evidence. Finally individuality of a forensic 
modality or of a piece of forensic evidence is the degree of distinctiveness of that type of 
evidence in a population. 

2.1.1 Statement of the problem 

The central focus of the project is to study the discriminability of fingerprints using compu­
tational approaches. Computational approaches provide large scale testing and evaluation 
that are infeasible using manual approaches. They also provide a means of evaluating various 
probabilities of interest in fingerprint comparison. 
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The effort was a three-pronged one. The first was to study the discriminability of a 

cohort group such as twins. The second was to model the statistical distributions of finger­
print features so that different probabilities of interest can be evaluated, e.g., probability of 
random correspondence of full and partial fingerprints; where the features considered were 
minutiae as well as ridge flow. The third was to determine error rates of automatic finger­
print comparison algorithms such as those used in fingerprint identification systems (AFIS) 
type; both standard algorithms and their improvements were considered. 

2.1.2 Literature citation and review 

The approach of fingerprint analysis is described in several text-books on the subject, in­
cluding the early classics [3, 4, 5] and more recent ones [6, 7, 8]. In the following we give a 
brief overview and literature survey, dividing the discussion into four parts: (A) fingerprint 
features, (B) AFIS algorithms for minutiae detection and comparison, (C) twin’s studies, and 
(D) individuality models. Throughout the discussion the focus is on AFIS type approaches. 
However the goal is to provide results of value for forensic analysis of latent prints and ten 
prints. 

A. Fingerprint Features 

The premise of fingerprint verification and identification is that the local ridge structures of 
fingers are unique given a sufficient amount of detail. Eighteen types of local ridge descrip­
tions have been identified [9, 10]. 

Features for representing fingerprints are usually grouped into three types [8]. Level 1 
features provide class-characterization of fingerprints based on ridge flow. They are divided 
into five primary classes: whorl, left loop, right loop, arch and tent (Figure 2.1). Some of 
the primary classes have secondary classes resulting in more than five class types. Level 1 
features are useful only to exclude possibilities and are insufficient for individualization. 

Level 2 features, which are more useful for individualization are also known as minutiae. 
Fingerprints such as those shown in Figure 2.1 are first aligned. This is done manually where 
core points are identified and then the image is centered. The minutiae correspond to ridge 
endings and ridge bifurcations. Automatic fingerprint matching algorithms use minutiae as 
the salient features, e.g., [11], since they are stable and are reliably extracted. A minutia is 
represented by its location and direction; direction is determined by the ridge ending at the 
location (Figure 2.2). The type of minutiae (either bifurcation or ending) is not distinguished 
since this information is not as reliable as the information on location and direction. Level 
3 features, such as pores and scars are ancillary features. 

Ridge endings and ridge bifurcations (Fig. 2.2(a)) are the two most prominent structures 
which are usually called minutiae. Normally, minutiae detection algorithms [11, 12] firstly 
define a set of template patterns that ridge endings or bifurcations would present like, and 
then compare local patterns with these template patterns while scanning the binary image 
of a fingerprint. With candidate minutiae indicated by the pattern matching stage, a post-
process to remove false minutiae are performed with various criteria [11]. Figure 2.2(b) 
displays detected minutiae on a skeleton fingerprint image. 
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Motivated by the fact that human examiners use general ridge information as well as 

minutiae, several algorithms [13, 14, 15, 16, 17, 18] have been proposed to utilize ridges 
for automatic fingerprint matching. However, existing algorithms mostly suffer from (i) 
sensitivity to non-linear deformation, (ii) much higher computational complexity and (iii) 
unscalable to partial fingerprint matching. 

B. AFIS Algorithms 

The most important part of the study involves level 2 features since they are what are 
primarily used by AFIS systems. Level 2 features consist of minutiae which are either ridge 
endings or ridge bifurcations. Each minutia is represented by a 3-tuple (x, y, θ) representing 
its position and orientation in the fingerprint image. 

When an input print is to be matched against the database two types of minutiae are 
extracted: ridge endings and ridge bifurcations. Both minutiae are represented as triples (x, 
y, θ) where x and y are the two-dimensional coordinates and θ is the angle made by a short 
line segment representing the minutiae. The direction of the line segment is determined by 
the direction of the ridge in the case of a ridge ending. In the case of a bifurcation the 
direction is determined by the bisector of the angle between the two bifurcating ridges. 

Minutia Detection. Several algorithms and software for detecting minutiae in friction 
ridge images are available. A program available from NIST known as MINDTCT (pro­
nounced “min-detect” for minutiae detector) takes as input a friction ridge image file, gen­
erates image maps, binarizes the image, detects minutiae, removes false minutiae, counts 
neighbor ridges, assesses minutiae quality and outputs a minutiae file. The MINDTCT pro­
gram performed well in a recent competitive test (known as FPVTE [19]) conducted for 
the US Visit program; the best was a product from NEC. An advantage of the MINDTCT 
program is that the source code is freely available and therefore modifiable for research pur­
poses. Yet for the purpose of latent print examination it may be relevant that a program 
such as MINDTCT may miss detecting some minutiae and detect false minutiae. When 
many minutiae (30 to 40) are correctly located, the fact that a few are missing or that a few 
are false may be inconsequential. 

Minutia Matching. With detected minutiae, fingerprint matching could be achieved with 
point pattern matching (minutiae matching). A number of minutiae-based matching algo­
rithms with varying accuracy and efficiency are described in the literature. The capability 
of a fingerprint matcher to find true correspondences between prints of the same finger while 
minimizing mismatches is the measure of performance of a matching algorithm. Due to fre­
quent non-linear deformation in fingerprint images, directly ensuring global correspondence 
is very difficult. Most matching algorithms tend to first compute local similarity and then 
perform global consolidation. The result of comparing two fingerprints is expressed as a 
similarity or distance measure. It signifies the strength of match between two fingerprints 
each of which is represented by a feature set. The similarity measure converts the data from 
feature space to distance space. 
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When fingerprints are characterized by minutiae a value in distance space is the result 

of comparing two sets of minutiae. Each minutia is characterized by a triplet {x, y, θ}, 
corresponding to the (x, y) coordinates of the minutia and its angular direction θ. The 
following procedure can be used to compute a distance measure between two fingerprint 
imprints. Let T be a template image with M minutiae and I be the input image with N 
minutiae: 

T = {m1,m2, . . . ,mM } where mi = {xi, yi, θi}, i = 1, . . . , M. (2.1) 

I = {m1�,m2�, . . . ,mN �} where mi� = {xj �, yj �, θj �}, j = 1, . . . , N. (2.2) 

The distance between a minutia mj in I and a minutia mi in T can be calculated using 
spatial distance (sd) and direction difference (dd) 

sd(mj �,mi) = (xj � − xi)2 + (yj � − yi)2 (2.3) 

dd(mj �,mi) = min ( |θj � − θi|, 360◦ − |θj � − θi| ) (2.4) 

Note that sd is the Euclidean distance and dd lies in the interval [0, π]. 
Fingerprint matching algorithms are based on the structure of minutiae within a given 

fingerprint. This structure can be captured by pairs of minutiae, triples of minutiae or even 
a set of k minutiae. Each of these is briefly described below. 

Pair of Minutiae The simplest local model is to define a minutia pair, as in the case 
of the Bozorth algorithm [11]. An intra–fingerprint minutiae pair table is constructed to 
capture relative position and orientation of a pair of minutiae. For each pair mi,mj where i 
and j are the index of minutiae, the local model vector is maintained as [dij , βi, βk, θij , i, j]. 
Here dij indicates the relative distance between minutiae mi and mj . βi and βj measure 
the relative angle of the minutiae with respect to the connecting line. Besides these relative 
measurements, absolute orientation of the connecting line θij is maintained for later global 
consolidation. (See Figure 2.3(a)). These pairwise measurements are made for each pair 
of minutiae where the connecting distance dij is less than a fixed threshold. In global 
consolidation, for a fingerprint pair, the Bozorth algorithm constructs a third table from 
the two intra-fingerprint tables. This inter–fingerprint compatibility table has potential 
associations between the two intra–fingerprint minutiae pair tables. The inter–fingerprint 
compatibility table is searched for the longest path of linked compatible associations. 

The Bozorth matcher algorithm is designed to be rotation and translation invariant. 
There are three main steps in the matcher: (i) construct an intra-fingerprint minutiae com­
parison table, (ii) construct an Inter-fingerprint compatibility table, (iii) traverse the tnter­
fingerprint compatibility table. A score corresponding to this longest path is then generated. 
The Bozorth score is typically in the range 0-50 for impostor scores and can be as high as 
350 for genuine scores. Other AFIS algorithms have similar scores but different ranges. 

Minutia Triplet The next level of complexity of a local model is to use a central minutia 
and two nearest neighbors, which together constitute a triplet. The triplet can be charac­
terized by a feature vector that contains minutiae information as well as ridge counts (No. 
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of ridges between two minutiae). An eleven dimensional feature vector was proposed in [54]. 
This can be simplified to include only minutiae information, thereby reducing the feature 
vector to a five-dimensional one [52]. This vector can be written as: [di0, di1, φij , φik, θi] where 
di0 and di1 respectively represents the distance from minutiae Mi to its nearest neighbors N0 

and N1; φik is the orientation difference between Mi and Nk (k is 0 or 1); and θi represents 
the acute angle between the line segments MiN0 and MiN1. (See Fig. 2.3(b)). In global con­
solidation, after the potentially corresponding triplet pairs have been identified, a histogram 
of the global rotation parameter is constructed. The peak of the histogram corresponds to 
the optimal rotation angle. Potentially corresponding triplet pairs are pruned by checking 
the differences between their individual rotation parameters and the optimal one. In the end, 
Minimum Cost Flow (MCF) [55] technique is used to find optimal correspondence between 
two fingerprints. 

k Minutiae The most general local model is to use a central minutia and a set of k 
nearest neighbors. One such local model[53] includes a central minutia mi and k other 
minutiae m1,m2, ..., mk chosen from its local neighborhood. The feature vector for each 
central-neighbor minutiae pair is (φij , θij , γij ) (See Figure 2.3(c)), where φij represents the 
direction of the edge connecting the two minutia mi and mj (j = 1, ..., k), which is measured 
relative to orientation of minutia mi; θij is the relative orientation of minutia mj (j = 1, ..., k) 
with respect to the central minutia mi; and γij represents the distance between minutiae mi 

and mj (j = 1, ..., k). In global consolidation, the method of [53] first converts a fingerprint 
represented by local k-minutiae models to an adjacency graph and then performs coupled 
breadth first search (CBFS) to search for minutiae correspondence between two fingerprints. 

C. Twin’s Studies 

The study of twins has been important in various physiological [20, 21, 22] and behavioral [23] 
settings. Genetic and environmental similarities of twins allow studies such as the effective­
ness of drugs, presence of psychological traits, etc. By examining the degree to which twins 
are differentiated, a study may determine the extent to which a particular trait is influenced 
by genetics or by the environment. 

In forensics and biometrics, few twin studies have been carried out in any modality due 
to the lack of sufficient data. Such studies are important since any modality needs to be 
evaluated in conditions under which the possibility of error is maximum, i.e., the worst-case 
scenario. Satisfactory performance with twins strengthens the reliability of the method. It 
also establishes the degree of individuality of the the particular trait. Such an individuality 
measure is relevant from the viewpoint of Daubert challenges in forensic testimony [1]. 

A significant number of twin pairs (206) have been studied for handwriting [24]. These 
samples were processed with features extracted and conclusions drawn by comparing verifi­
cation performances with twins and non-twins. In that study the conclusion was that twins 
are discriminable but less so than an arbitrary pair of individuals. 

A fingerprint twin study has been previously reported with a small data set of 94 pairs of 
index fingers [25]. Using a state-of-the-art fingerprint verification system it was concluded 
that identical twins are discriminable with lower accuracy than non-twins. The slight dif­
ference was attributed to the dependence of minutiae distribution on fingerprint class. The 
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present study involves a much larger set of nearly 3,000 pairs of fingers. 

The question to be answered is whether there exists a higher degree of match between 
individuals who are twins rather than when the individuals are not twins. The goal is to 
determine if friction ridge patterns from cohorts (twins) are more difficult to tell apart. 

D. Individuality Models 

Fingerprint individuality studies started in the late 1800s. A critical analysis of the models 
proposed upto about 2000 has been made by Stoney [26, 27]. The goal of this part of 
the project was to place this work in the context of Stoney’s work– by providing a new 
organization of the models– and focus on some of the newer generative models. 

About twenty models have been proposed trying to establish the improbability of two dif­
ferent fingers having the same fingerprint. The models, which are mostly based on minutiae, 
try to quantify the uniqueness property. The models are used to find out the probability 
of false correspondence, i.e., probability that a wrong person is identified given a latent fin­
gerprint collected from a crime scene from a set of previously recorded whole fingerprints. 
A match here does not necessarily mean an exact match but a match within given toler­
ance levels. The models can be classified into different categories based on the approach 
taken. The models typically establish the probability of two samples being identified as the 
same based on their fingerprint features– which is referred to as the probability of random 
correspondence (PRC). 

The models can be classified for better understanding based on the different approaches 
taken. Figure 2.3.3 shows such a taxonomy of different individuality models. There are five 
different model categories: grid-based, ridge-based, fixed probability, relative measurement 
and generative. Grid-based models include Galton[3] and Osterburg[28] which were proposed 
in the late 80s and the early 90s respectively. Ridge-based models include the Roxburgh 
model[29, 30]. Fixed probability models contain the class of Henry-Balthazard[4, 31] models. 
Relative measurement models include the Champod model[32] and the Trauring model[33]. 

Statistical models in pattern recognition can be divided into those that are discriminative 
and those that are generative [34]. In discriminative models the probability of classification 
error is computed and used as a measure of individuality[35]. In generative models a distri­
bution of the features is inferred from the data which is then used to compute the probability 
of random correspondence. In the case of fingerprints, the distribution of fingerprint features 
is modeled from a database from which the PRC can then be computed [36, 37, 38] . 

2.1.3 Rationale for the research 

The individuality study has a three-fold complementary approach: a study of the fingerprints 
of twins using automatic fingerprint matching algorithms and a computational evaluation of 
the individuality of fingerprints using generative and discriminative approaches. 

Cohort studies involving twins are commonly used in physiological and behavioral sciences 
because they are likely to provide two samples having the maximum likelihood of being 
similar. In the case of comparing forensic evidence cohort studies can provide an upper 
bound on the error that could be expected. 
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The generative approach to measuring individuality is based on sound statistical prin­

ciples. It involves a two-step process in which a statistical model is first inferred and it is 
then used to derive a probability. There are several advantages in using a generative model 
over a discriminative model, e.g., assumptions made in deriving the model are explicit, mod­
els derived from different data sets can be compared without dependence on the particular 
classification method used. 

The discriminative approach to measuring fingerprint individuality directly addresses the 
issue of error rates. Any discriminative approach involves two aspects: feature extraction 
and classification. Both of these were addressed in this research. The use of likelihood-based 
approaches is an effort to improve classification methods and the use of ridge information is 
an effort to improve feature extraction. 

2.2 Methods 

Description of methods used in this research are divided into four parts: discriminability 
of twin’s fingerprints (Section 2.2.1), generative model of fingerprint individuality (Section 
2.2.2), use of likelihood-based methods in fingerprint comparison (Section 2.2.3) and use of 
ridge information in fingerprint comparison (Section 2.2.4). 

2.2.1 Discriminability of Twin’s Fingerprints 

A. Data Set and Methodology 

Two data sets were used in this study. The principal data set consisted of friction ridge 
patterns of over six hundred pairs of twins. This data set was collected by the International 
Association for Identification (IAI) at a twins festival held in Twinsburg, Ohio in August 
2003. The friction ridge images of 610 individuals corresponds to: 297 sets of twins, 5 pairs 
of twins along with their families, 5 sets of twins with inconclusive or no DNA analysis 
results, and three sets of triplets. For each individual there are ten fingerprints, thus making 
available 2,970 pairs of twin’s fingers. In addition there are writer palm prints. The twins’ 
images were all obtained using a live-scan device at 500 dpi. Fig. 2.5 shows a sample of 
pairs of twin fingerprints. Fig. 2.6 shows 10 rolled fingerprints from one individual. 

Another data set that was used in the study was a standard data set (non-twin) available 
from NIST. The FVC2002 DB1 was collected by using optical sensor ”TouchView II” by 
Identix. The database is 110 fingers wide and 8 samples per finger in depth (it consists of 
880 fingerprint images in total). The database is partitioned in two disjoint subsets A and B. 
The subset DB1-A, which contains the first 100 fingers (800 images), is used for the algorithm 
performance evaluation; the subset DB1-B, containing the last 10 fingers (80 images), is for 
parameter tuning if necessary. The image format is TIF, 256 gray-level, uncompressed. The 
image resolution is about 500 dpi and the size is 388 × 374 (142K pixels) The orientation of 
fingerprint is approximately in the range [-15, +15] degrees w.r.t the vertical orientation. 

Twin Demographics. A meta-data table accompanying each folder of fingerprint images 
gives the demographic information for the individual, code for the individual and a pointer to 
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his/her twin. The demographic information consists of age, gender, hair color, racial charac­
teristics, whether twins are identical or fraternal, and handedness. The distribution of ages 
of the twins is given in Fig. 2.7– which shows that the twins in the study are predominantly 
in their adolescent years and therefore the quality of the prints can be expected to be good. 
Other meta data details include the hair color, sex, race and handedness(left/right). The 
corresponding distribution in the database for each is illustrated in Fig. 2.8. 

Study Methodology. The goal of this study is to determine whether the fingerprints of 
twins are more similar to each other than in the case of the general population. Friction 
ridge patterns contained in fingerprints can be analyzed at several levels of features. Level 1 
features correspond to visually observable characteristics such as whorl, arch, loop, double 
whorl, etc. Level 2 features correspond to minutiae, which are points corresponding to ridge 
endings and ridge bifurcations, that are represented as a triple consisting of (x,y) coordinates 
and a direction θ. Level 3 features include pores within ridges and other marks. 

The analysis reported here was done using only level 1 and level 2 features. The level 1 
analysis was done manually and the level 2 analysis was done using algorithms such as those 
used in an automatic fingerprint identification system (AFIS). In the case of fingerprints we 
need to ensure some overlap between different portions of the images to always not get an 
exclusion. For non-twins (and different fingers) test cases can be generated. 

B. Twins’ Level 1 Comparison 

The first study was to determine the similarities at Level 1. An interface was created to 
present one fingerprint at a time to the subject on a screen. The observer was asked to 
determine whether the given print belonged to one of six categories: arch, tented arch, right 
loop, left loop, whorl and twin loop. 

Two individuals independently performed the Level 1 classification. Their individual 
classifications were then compared. When there was a disagreement in their decision, a third 
individual did an arbitration to determine the correct classification. Finally, the classification 
decisions were validated by two professional friction ridge examiners. The overall distribution 
of the six level 1 features are shown in the chart of Figure 2.9. Level 1 fingerprint classification 
is known to be somewhat error prone [39]. However the distribution obtained provides an 
indication of how frequently each class is encountered, i.e., right loop (30%), left loop (27%), 
whorl (19%), arch (13%), twin loop (7%) and tented arch (5%). 

The analysis consisted of determining as to how often the the prints of the same finger 
in a pair of twins matched and a comparison with the case of non-twins. Examples of pairs 
of prints when they belonged to identical twins and fraternal twins (same hand and finger) 
are given in Table 2.2. 

The results were as follows. The percentage of times twins had the same level 1 label for 
a given finger was 54.68%. The percentage of times non-twins had the same level 1 label was 
31.76%. Thus we can conclude that twins are nearly twice as likely as non-twins in matching 
level 1 features. Further, considering only identical twins, the percentage of same level 1 was 
56.92% as against 39.44% for fraternal twins. 
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Level 1 features are used only as a coarse method of eliminating candidates from a large 

database as in AFIS. However it has no implication on the discriminability of twins since 
level 1 features are not used in fingerprint identification. 

C. Twin’s Level 2 Comparison 

The question to be examined is as to whether the fingerprints match when minutiae are used 
as features. For this purpose we can use an AFIS type of algorithm which extracts minutiae 
and performs an identification as being the same or different when given the fingerprint 
images of twins. The twin and non-twin level 2 error rates are given in Table 2.1. 

The scores of corresponding fingers provides a score distribution. We can do this for 
the fingers of twins. However we will be left with deciding on a threshold of the scores to 
determine whether it was match or a non-match. Instead, we can obtain a distribution of the 
scores of non-twins and compare the two distributions. This will help us determine whether 
they are the same or whether they are different. 

The design of statistical experiments for the testing of samples originating from twin pairs 
is important. The goal is to compare the matching score distribution of twins fingerprints 
to that of non-twins (see Figure 2.10). How different the distribution of scores of identical 
twins are from those of fraternal twins is considered. 

The approach taken was to use an AFIS type algorithm to quantify the results. The 
MIN-DTCT algorithm for detecting minutiae and the Bozorth matcher [11], which provides 
a score for the degree of match of a pair of fingerprints, both of which are available from 
NIST, was used to compare fingerprint pairs. The final step was to determine the similarity 
of the distributions. Below is described a brief summary of the algorithm. 

Scores for the two populations of non-twins and twins, both for the same finger were 
obtained using the scenario depicted in Figure 2.10. The results were evaluated in two ways. 
The first was to simply place thresholds on the scores so as to make “hard” decisions whether 
the fingerprints had the same origin. The second was to make a “soft comparison” as to 
whether the score distributions were the same. 

Fingerprints from a set of 297 pairs of twins was used to carry out the evaluation. The 
fingerprints were rolled fingerprints with 10 prints(corresponding to 10 fingers) per person. 
The total number of prints used were 297 ∗ 2 ∗ 10 = 5, 940 (i.e., 2,970 twin pairs). Out 
of these 740 were prints of fraternal twins and the remaining 2, 240 were those of identical 
twins. 

Scores provided by the Bozorth matcher were thresholded to provide a hard decision as to 
whether the input fingerprints originated from the same finger. The thresholds are derived 
from the genuine and impostor distributions. The genuine distribution comes from multiple 
fingerprints of the same fingerprint as shown in Figure 2.11(e). The resulting error rates are 
shown in Table 2.1. 

D. Score Distributions 

The error rates are dependent upon a choice of threshold, such as the equal error rate (EER) 
threshold used in Table 2.1. To remove this dependency, we can instead obtain a distribution 
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of the scores and compare it with the distribution of non-twins. This will also help take into 
account the entire range of values rather than value relative to a single threshold. 

The following five distributions were obtained. 

1. Twins: The fingerprint of an individual was compared with the corresponding finger­
print of his/her twin. The number of comparisons made is 2, 970. Let us denote the 
distribution of scores from matching twins as T . 

2. Non-Twins: In this case an individual’s fingerprint was compared with the correspond­
ing fingerprint of all other people who were not his/her twin. The total number of 
comparisons possible was 10 (ten prints) x 596 (total individuals who are twins) x 594 
(leaving out the individual and his or her twin) = 3,540,240. Out of these 6, 650 were 
used for the experiments based on computational considerations (133 × 10 × 5). Let 
us denote the distribution of scores from matching twins as N . 

3. Identical Twins:	 This involved comparing fingerprints of identical twin and let us 
denote this with I. 

4. Fraternal Twins: This involved comparing fingerprints of fraternal twins and is denoted 
with F . 

5. Genuine: Pairs of fingerprints that belong to the same finger were compared against 
each other to obtain the Genuine distribution. The FVC2002 Db1 data set was used 
to obtain this particular distribution due to lack of multiple rolled fingerprint samples 
of the same finger in the twins’ database. A total of 100 fingers with 8 samples of each 
finger constituting a total of 800 prints were present in the FVC2002 Db1 database. 
These were also obtained as lve scan images at 500 ppi, similar to the twins’ dataset. 

Histograms of the Bozorth scores for each of the five cases described are shown in Figure 
2.11. 

E. Comparing Distributions 

Many statistical tests exist to compare two distributions. These tests answer the ques­
tion: “Can we disprove, with a certain required level of significance, the null hypothe­
sis that the two distributions are drawn from the same population?” as stated in [40]. 
Some of the most common tests used in order to quantify the difference in the distributions 
are: chi-square, Kolmogorov-Smirnov (KS), student-T and ANOVA. Amongst these, the 
Kolmogorov-Smirnov test assumes nothing about the distribution and also can be used on 
unbinned distributions. Hence, it is chosen as the one that will be used for this statistical 
study. 

The KS test was used to obtain a probability of similarity between two distributions. The 
KS test is applicable to unbinned distributions that are functions of a single independent vari­
able, that is, to data sets where each data point can be associated with a single number[40]. 
The test first obtains the cumulative distribution function of each of the two distributions to 
be compared, and then computes the statistic, D, which is a particularly simple measure: it 
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is defined as the maximum value of the absolute difference between the two cumulative dis­
tribution functions. Therefore, if comparing two different cumulative distribution functions 
SN1(x) and SN2(x), the KS statistic D is given by D = max−∞<x<∞ |SN 1(x)−SN2(x)|. What 
makes the KS statistic useful is that its distribution in the case of the null hypothesis (data 
sets drawn from the same distribution) can be calculated, at least to useful approximation, 
thus giving the significance of any observed nonzero value of D. The significance level of an 
observed value of D is given approximately[40] by equation 2.5. 

PKS = Probability(D¿Observed) = QKS Ne + 0.12 + (0.11/ Ne)D , (2.5) 

where the QKS ( ) function is given by (see [40] for details): ·

∞

QKS (λ) = 2 (−1)j−1 e−2j2λ2 
, such that : QKS (0) = 1 , QKS (∞) = 0 , (2.6) 

j=1 

and Ne is the effective number of data points, Ne = N1N2(N1 + N2)
−1, where N1 is the 

number of data points in the first distribution and N2 the number in the second. The 
following sections discuss other methods of comparing two distributions. 

The KS test was performed to compare the distributions and to obtain a significance 
level that the distributions are drawn from the same population. Table 2.3 summarizes the 
results. The value shown in each of the cell of table 2.3 indicates the significance level with 
which it can be said that the two distributions are drawn from the same population. The 
hypothesis tested and their significance and conclusion are given below. 

1.	 Test 1 

•	 Hypothesis: Similarity of fingerprints of twins is the same as the similarity 
between genuine prints of the same finger. 

•	 Significance level: .1% (refer column 1 in Table 2.3). 

•	 Deduction: Hypothesis is rejected since it lesser than 5% signifiance. It is 
concluded that similarity of fingerprints of twins is different from that between 
genuine prints of the same finger. 

2.	 Test 2 

•	 Hypothesis: Similarity of fingerprints of identical twins is the same as the sim­
ilarity between fingerprints of fraternal twins. 

•	 Significance level: 99.99% (refer column 2 in Table 2.3). 

•	 Deduction: Hypothesis is accepted since it is stronger than 95% significance. It 
is concluded that similarity of fingerprints of identical twins is the same as the 
similarity between fingerprints of fraternal twins. 

3.	 Test 3 
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•	 Hypothesis: Similarity of fingerprints of twins is the same as the similarity 

between arbitrary fingers. 

•	 Significance level: 11.74% (refer column 3 in Table 2.3). 

•	 Deduction: Significance is not lesser than 5% to reject the hypothesis. It can 
however be said that the conclusion is not in favour of the Hypothesis and hence 
the similarity of fingerprints of twins is different from the similarity between ar­
bitrary fingers. 

Further the distributions can also be compared by parametric methods. The distributions 
being positive can be modeled with Gamma distributions. The corresponding probability 
density functions are shown in Figure 2.12, which are gamma distributions corresponding to 
twins(T ), non-twins(N ), and same finger distributions G. 

A slight shift in the twins distribution in comparison to the non-twins distribution can 
be observed. 

2.2.2 Generative Model of Fingerprints 

Generative models are statistical models that represent the distribution of patterns of inter­
est, where the patterns are represented quantitatively as a vector x. They are referred to 
as being generative in that given the distribution, samples can be generated from them [34]. 
In these models, a distribution of x is learnt through a training data set. There are several 
practical uses of generative models, e.g., generating samples to test algorithms, evaluating 
probabilities of random correspondence, evaluating the probability of a given pattern, etc. 
What training set is used to learn the distribution is immaterial as long as it is representative 
of the entire population. 

Our goal is to model the distribution of fingerprints based on features. The distributions 
considered are those based on ridge flow types, minutiae only and a combination of minutiae 
and ridge flow information. In choosing parametric forms to represent distributions, methods 
for estimating distribution parameters are discussed. The resulting models are validated 
using goodness-of-fit tests. 

A. Distribution of Ridge Flow Type 

A simple distribution of the Level 1 ridge flow types is obtained by counting the relative 
frequency of each of the primary and secondary types in a fingerprint database. In our 
evaluation using the twin’s database (Section 2.2.1) loops account for 64% of the fingers, 
with the secondary types being: 30% left loops, 27% right loops and 7% double loops. 
Arches account for 18% of the primary types, with the seondary types being: plain arches 
(13%) and tented arches (5%). Whorls account for the remainder of the Level 1 types (19%). 

Level 1 features are clearly broad class characteristics which are useful for exclusion of 
individual fingers but not by themselves useful for the tasks of verification, identification and 
individualization. 
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B. Distribution of Minutiae 

Each minutia is represented as x = (s, θ) where s = (x1, x2) is its location and θ its direction. 
The distribution of minutiae location conditioned on ridge flow is shown in Figure 2.13 where 
there were 400 fingerprints of each type. In the model we develop the combined distribution 
over all types is used (Figure 2.13(f)). 

Since minutia location has a multimodal distribution, a mixture of K Gaussians is a 
natural approach. For the data set considered a value of K = 3 provided a good fit, as 
validated by a goodness of fit test. Values of K = 4, 5 do not fit the data as well. A 
Gaussian mixture with k = 3 is shown in Figure 2.14. 

Since minutiae orientation is a periodic variable, it is modeled by a circular normal or 
von Mises distribution which itself is derived from the Gaussian [34, 41]. Such a model is 
better than mixtures of hyper-geometric and binomial distributions [36, 37]. 

Such a model for minutiae distributions involves a random variable z that represents the 
particular mixture component from which the minutia is drawn. In this model both minutiae 
location and orientation depend on the component they belong to. Minutiae location and 
orientation are conditionally independent given the component. This is represented by 

p(x|z) = p(s, θ|z) = p(s|z)p(θ|z), (2.7) 

whose graphical model is shown in Figure 2.15 from which we have the joint distribution 

p(x, z) = p(z)p(x|z). (2.8) 

Marginalizing over the components, we have the distribution of minutiae as 

p(x) = p(z)p(x|z). (2.9) 
z 

Substituting (2.7) in (2.9) we have 

p(x) = p(z)p(s|z)p(θ|z). (2.10) 
z 

Since minutiae location within each component is Gaussian and minutiae orientation 
within each component is von Mises we can write 

K

p(x|Θ) = πk · N (s|µk, Σk) · V(θ|νk, κk), (2.11) 
k=1 

where K is the number of mixture components, πk are non-negative component weights that 
sum to one, N (s|µk, Σk) is the bivariate Gaussian probability density function of minutia 
with mean µk and covariance matrix Σk, V(θ|νk, κk) is the von Mises probability density 
function of minutiae orientation with mean angle νk and precision (inverse variance) κk, and 
Θ = {πk, µk, Σk, νk, κk, ρk} where k = 1, 2, .., K is the set of all parameters of the k Gaussian 
and von Mises distributions. 
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Rather than using the standard form of the von Mises distribution for the range [0, 2π], 

since minutiae orientations are represented as being in the range [0, π), we use the alternate 
form [41] as follows 

V(θ|νk, κk, ρk) = ρkυ(θ) · I{0 ≤ θ < π} + (1 − ρk)υ(θ − π) · I{π ≤ θ < 2π} (2.12) 

where I{A} is the indicator function of the condition A, 

2 
υ(θ) ≡ υ(θ|νk, κk) = 

I0(κi)
exp[κicos2(θ − νk)], (2.13) 

minutiae arising from the kth component have directions that are either θ or θ + π and the 
probabilities associated with these two occurrences are ρk and 1 − ρk respectively. 

Since fingerprint ridges flow smoothly with very slow direction changes, direction of 
neighboring minutiae are strongly correlated, i.e., minutiae that are spatially close tend to 
have similar directions with each other. However, minutiae in different regions of a fingerprint 
tend to be associated with different region-specific minutiae directions thereby demonstrating 
independence [42, 43]. The model allows ridge orientations to be different at different regions 
(different regions can be denoted by different components) while it makes sure that nearby 
minutiae have similar orientations (as nearby minutiae will belong to the same component). 

C. Distribution of minutiae and ridges 

In the model just discussed, only minutiae was used in the framework of generative models for 
fingerprints. Models based purely on minutiae may be sufficient to model biometric scenarios 
where finger-prints are obtained in controlled conditions [36][37], but are insufficient to model 
forensic scenarios where latent prints are lifted off of surfaces. Due to the poor quality of 
latent prints, the detected minutiae are of low quantity and quality [44]. 

Ridge details provide vital information in latent fingerprints. Verification systems using 
minutiae together with ridge information are more accurate than using minutiae alone. Also, 
any generative model that makes use of ridge details can only be a better representation of 
the generative model for fingerprints. Ridge features are illustrated in Figure 2.16 where 
three different fingerprints are shown. In fingerprints 1 and 2, minutiae locations m1 and m2 

are similar as well as the associated ridges r1 and r2, are similar. In fingerprint 3, minutia 
location m3 is similar to m1 and m2 but the ridge r3 is dissimilar to r1 and r2. Thus two 
minutiae matching with each other on location and orientation may actually have two very 
different ridge shapes. Thus, to make more reliable decisions on whether two fingerprints 
match, we use ridge information as well as minutiae location and orientation information. 
With this motivation, the distribution of ridge information is embedded into generative 
models. 

The length of the ridge lr is defined as the number of ridge points that could be sampled 
on the ridge. Three types of ridges are defined: (i) short: lr ≤ L/3, (ii) medium: L/3 < lr ≤
2L/3 and (iii) long: lr > 2L/3, where L is the average ridge length of the top 10% longest 
representative ridges in the fingerprints database, e.g. in FVC2002, L is 18. By choosing the 
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value of maximum ridge length L as the average of long ridges in the database, unusually 
long ridges caused by artifacts is avoided. The three possible ridge length types can be 
associated with any representative ridge. Without loss of generality, we can assume that 
there exist only three possible ridge length types corresponding to a representative ridge. 
The distribution of ridge length lr is modeled as 

c1 c2	 c3 
p(lr) = I{lr ≤ L/3} + I{L/3 < lr < 2L/3} + I{2L/3 ≤ lr ≤ L} (2.14) 

c 
· 

c 
·	

c 
· 

where I{C} is the indicator function of condition C, c1, c2 and c3 are the numbers of short, 
medium and long representative ridges, and c = c1 + c2 + c3. 

For ridges with different lengths, different ridge points are picked as anchors. For medium 
ridges, �L/3�th ridge point is picked and for long ridges, both �L/3�th and �2L/3�th are 
picked. No ridge point is chosen for short ridges. The rationale for choosing these two ridge 
points is described in 2.2.4. 

Let x = {xm, xr} denote the feature vector of a representative ridge, where xm is a single 
minutia {sm, θm}, and xr consists of points along the ridge on which xm lies. Noting that 
the length of xr is lr ≤ L the points of xr are given by {xri : (i ∈ {�L/3�, �2L/3�})&(i ≤ lr)}
where xri is the ith ridge point. 

L 

In contrast to the model for minutiae, ridge points are represented with respect to the 
minutiae defining the ridge. This is done naturally using the minutia as the origin and using 
polar coordinates to represent ridge points as shown in Figure 2.17. The location of ridge 
point sri is given by {ri, φi} and the direction of ridge point is θi. Thus the ridge point xri is 
represented as the combination of location and direction {ri, φi, θi} where ri is the distance 
from the ith ridge point to the minutia, φi is the positive angle required to reach the ith ridge 
point from the polar axis. 

A graphical model that represents the use of ridge information in addition to minutiae 
is given in Figure 2.18. The joint distribution of anchor minutia xm and associated ridge 
points xr, all located on a ridge of length lr, can thus be written as 

p(lr, xm, xr) = p(lr) · p(xm|lr) · p(xr|xm, lr)	 (2.15) 

where p(lr) is the marginal distribution of ridge length, p(xm|lr) is the conditional distribution 
of minutiae given the ridge length type and p(xr|xm, lr) is the conditional distribution of ridge 
points given corresponding minutiae and ridge length type. For different ridge lengths, the 
conditional distribution of ridge points xr can be written as ⎧	 L ⎨ 1	 lr 3 

L 
≤ 

2L 
p(xr xm, lr) = p(x xm, lr)	 3 > lr ≤ 

3 (2.16)|
|
 r�⎩
 3
2L p(x
 |
xm, lr) p(x· r�L 

3
|
xm, lr) lr >L 

3
2r� 3 

L th 2L th 

3 � 3 �where x
 and x
 L 
3

2 � represent the � and �
 ridge points.
r�
3
L r� 

The generative model is based on the distribution of representative ridges. Mixture 
distributions consisting of Ki components, i = 1, 2, 3, is used to model representative ridges 
of three ridge length types. Each component is distributed according the density of the 
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minutiae and density of ridge points. Assuming that the minutiae and ridge points are 
independent, representative ridge distribution is given by ⎧ �K1 L⎪⎪⎪⎪⎪⎪⎪⎪⎪

p(lr) · πkpk(sm, θm|Θk) lr ≤g=1 3 �K2 ⎨ p(lr) k=1 πkpk(sm, θm Θk)· |
L 2L 

3 � 3 � 3 �
LLLpk(r , φ
 , θ
 Θk) < lr <|
p(x|Θ) = ⎪⎪⎪⎪⎪⎪⎪⎪⎪

·

3 3 �K3 p(lr) · k=1 πkpk(sm, θm Θk) pk(r· , φ
 , θ
 Θk)|

Θk) 
|
L 

3 � 3 � 3 �
L 

2 2 2

L 

The first condition corresponds to minutia alone, the second to minutia and one ridge 
point, and the third to minutia and two ridge points. In (2.17), pk(sm, θm|Θk) represents the 
distribution of the minutiae location sm and the direction θm; pk(ri, φi, θi|Θk) represents the 
distribution of the ith ridge points. They are defined as in (2.18) and (2.19) respectively. 

pk(sm, θm|Θk) = N (sm|µmk, Σmk) · V(θm|νmk, κmk, ρmk) (2.18) 

L 

pk(ri, φi, θi|Θk) = pk(ri, φi|µik, Σik, ν
φ , κφ , ρφ ) · V(θi|νθ , κθ , ρθ ) (2.19)ik ik ik ik ik ik

L 

where pk(sm, θm|Θk) can be caculated by Eq. 2.11 and pk(ri, φi, θi|Θk) is the product of 
the probabilities of ridge point locations and directions, where V(θi|νθ , κθ , ρθ ) presentsik ik ik

L 

the distribution of the ridge point direction, θi is the direction of the ith ridge point and 
pk(ri, φi|µik, Σik, ν

φ , κφ , ρφ ) is the distribution of ridge point location given byik ik ik

pk(ri, φi|µik, σik, ν
φ , κφ , ρφ ) = N (ri| |νφ , κφ , ρφ ) (2.20)ik ik ik µik, σik) · V(φi ik ik ik

where N (ri|µik, σik) is a univariate Gaussian distribution whose mean µik and variance 
σik are learnt from a fingerprint database. 

D. Parameter Estimation 

The parameter estimation problem for both minutiae and representative ridges are similar 
since the latter consists of only including additional points. Since the mixture distribution 
given in (2.11) and (2.17) cannot be directly maximized, due to the summations involved, 
an alternative approach is needed. We now develop an equivalent formulation of the mixture 
distribution given in (2.11) by involving an explicit latent variable. This will allow us to 
formulate the problem of parameter estimation in terms of the expectation maximization 
(EM) algorithm. 

We define the joint distribution p(x, z) in terms of a marginal distribution p(z) and a 
conditional distribution p(x|z), corresponding to the graphical model in Figure 2.19(a). 

Given that the total number of minutiae observed in a finger is D, a joint distribution 
model is needed. The D minutiae are assumed to be independent of each other, with each 
minutiae, consisting of an x(s, θ) pair, being distributed according to a mixture of component 
densities. This is shown in Figure 2.19(b). 
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The K-dimensional random variable z has a 1-of-K representation in which a particular 

element zk is equal to 1 and all other elements are equal to 0, we can write 

K

p(z) = πk
zk (2.21) 

k=1 

Similarly the conditional distribution of x given a particular value for z is given by 

p(x|zk = 1) = N (x|µk, Σk) · V(θ|νk, κk, ρk) (2.22) 

which can also be written in the form 

K

p(x|z) = N (x|µk, Σk)
zk · V(θ|νk, κk, ρk)

zk . (2.23) 
k=1 

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is ob­
tained by summing the joint distribution over all possible states of z to give 

K

p(x) = p(z)p(x|z) = πk · N (s|µk, Σk) · V(θ|νk, κk, ρk) (2.24) 
z k=1 

where we have made use of (2.21) and (2.23). Thus the marginal distribution of x is a 
mixture of the form (2.11). If we have several observed minutiae x1, x2, ..xD then, because 
we have represented the marginal distribution in the form p(x) = z p(z)p(x|z), it follows 
that for every observed minutia xn, there is a corresponding latent variable zn. 

We are now able to work with the joint distribution p(x, z) instead of the marginal distri­
bution p(x) . To estimate the unknown parameters using the maximum likelihood approach, 
we use the EM algorithm. The number of components K for the mixture model was found 
after validation using k-means clustering. 

E-Step: Using γdk is to denote the responsibility of component k for minutiae xd, its 
value can be found using Bayes’s theorem 

p(zk = 1)p(xd zk = 1) 
γdk ≡ p(zk = 1|xd) = �K

k=1 p(zk = 1)p(

|
xd|zk = 1) 

= �K 

πkN (sd|µk, σk)V(θd|νk, κk, ρk) 
(2.25) 

k=1 πkN (sd|µk, σk)V(θd|νk, κk, ρk) 

M-Step: The estimates of the Gaussian distribution parameters πk, µmk and Σmk at the 
(n + 1)th iteration, are given by 

D
(n+1) 1 � 

(n)
πk = γdk (2.26)

D 
d=1 
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�D (n) 
(n+1) d=1 γdk sm 
µmk = �D (n)	

(2.27) 
γd=1 dk 

(n+1) 
�D γ

(n)
(sm − µ(n+1)

)(sm − µ(n+1)
)T 

Σmk = d=1 dk �D
mk 

(n) 
mk	 (2.28) 

γd=1 dk 

The parameters for orientation distributions are obtained using expectation maximization 
for the von Mises distribution [45]. The estimates of νmk and κmk at the (n + 1)th iteration 
are given by ��D 

� 
(n+1) d=1	 dkνmk = 

2

1 
tan−1 �D	

γ
(

(

n

n

)

) 

sin2ψd 
(2.29) 

γdk cos2ψdd=1 

(n+1) �D (n) (n+1) 
mk d=1	 kI0

� (κ )
= 

rdk cos2(ψd − ν ) 
.	 (2.30)

(n+1)
) 

�D r
(n)

I0(κmk d=1 dk 

The solution for (2.30), which involves Bessel functions, obtained using an iterative 
method gives the estimate for κmk. The estimate of ρmk is then obtained as �D (n+1) 

ρ
(n+1) 

= d=1 I{cd = k, θd ∈ [0, π)} 
(2.31)mk �D (n+1) 

d=1 I{cd = k} 

(n+1)	 (n+1)
where cd = arg maxkγdk is the component label for the observation d at the (n + 1)th 
iteration, ψj is the orientation of the minutiae mj . 

In the same way, the parameters for ridge point νθ , κθ , ρθ and νφ , κφ , ρφ can be esti­ik ik ik ik ik ik 
mated by Eq. (2.29), (2.30) and (2.31), when ψj is set as θi and φi respectively. 

E. Goodness of Fit 

Goodness of fit means how well a sample of data agrees with a given distribution as its 
population. To test the goodness of fit, the chi-square statistical hypothesis test is applied. 
Chi-square goodness of fit test determines whether observed sample frequencies differ sig­
nificantly from expected frequencies specified in the null hypothesis. The test is applied to 
binned data (i.e., data put into classes) and requires a sufficient sample size in each bin 
in order for the chi-square approximation to be valid [46]. In the case of fingerprint, we 
partitioned the minutiae location and direction space into 16 × 4 non-overlapping blocks. 
The blocks are combined with adjacent blocks until both observed and expected numbers 
of minutiae in the block are greater than or equal to 5. The test statistic used here is a 
chi-square random variable χ2 defined by the following equation. 

χ2 
� (Oi − Ei)

2 

= (2.32)
Eii 

where Oi is the observed minutiae count for the ith block, and Ei is the expected minutiae 
count for the ith block. 
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The p-value, the probability of observing a sample statistic as extreme as the test statistic, 

associated with each test statistic χ2 is then calculated based on the chi-square distribution 
and compared to the significance level. For the FVC2002 DB1, we chose significance level 
equal to 0.01. The numbers of fingerprints with p-values above (corresponding to accept 
the model) and below (corresponding to reject the model) the significance level are then 
computed. The results are given in Table 2.4. Of the 800 fingerprints, 679 are accepted with 
ridge model which is higher than 574 and 121 are rejected whichis smaller than 226. The 
results imply that the mixture model with ridge information offers a better fit to the observed 
fingerprints compared to the model without ridge information. In addition, the independent 
assumptions between minutiae and between minutiae and ridge points are proved to be 
reasonable. 

F. Evaluation of PRCs 

Minutiae Only. To compute the PRCs, we first define correspondence, or match, between 
two minutiae. Let xa = (sa, θa) and xb = (sb, θb) be a pair of minutiae. The minutiae are 
said to correspond if for tolerance � = [�s, �θ], 

|sa − sb| ≤ �s and |θa − θb| ≤ �θ (2.33) 

where |sa − sb|, the Euclidean distance between the minutiae location sa = (xa1, xa2) and 
sb = (xb1, xb2), is given by 

|sa − sb| = (xa1 − xb1)2 + (xa2 − xb2)2 (2.34) 

Then, the probability that a random minutia xa would match a random minutia xb is 
given by 

p�(x) = p�(|xa �− xb| ≤ �|Θ) 

= p(xa|Θ)p(xb|Θ)dxadxb (2.35) 

xa |xa−xb|≤� 

where Θ is the set of parameters describing the distribution of the minutiae location and 
direction. 

Finally, the PRC, or the probability of matching at least m̂ pairs of minutiae within � 
between two randomly chosen fingerprint f1 and f2 is calculated as 

m) m)m1 m2 
ˆ p�(x) ˆ (m2− ̂p�(m̂, m1,m2) = 

m̂ m̂
m! · m(1 − p�(x))(m1− ̂ · (2.36) 

mwhere m1 and m2 are numbers of minutiae in fingerprints f1 and f2, p�(x) ˆ is the probability 
of matching m̂ specific pairs of minutiae between f1 

m)· m) is the and f2, (1 − p�(x))(m1− ̂ (m2− ̂

probability that none of minutiae pair would match between the rest of minutiae in f1 and 
f2 and m

m̂
1 m

ˆ
2 m̂! is the number of different match sets that can be paired up. 

m 
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Given n fingerprints and assuming that the number of minutiae in a fingerprint m can 

be modeled by the distribution p(m), the general PRCs p(n) is given by 

n(n−1) 
2p(n) = 1 − p̄(n) = 1 − (1 − p�) (2.37) 

where p� is the probability of matching two random fingerprint from n fingerprints. If we set 
the tolerance in terms of number of matching minutiae to m̂, p� is calculated by 

p� = p(m�
1)p(m

�
2)p�(m̂, m

�
1,m

�
2) (2.38) 

m�1∈M1 m2
� ∈M2 

where M1 and M2 contain all possible numbers of minutiae in one fingerprint among n 
fingerprints, and p�(m̂, m�

1,m
�
2) can be calculated by Eq. 2.36. 

Given a specific fingerprint f , the specific nPRCs can be computed by 

p(f, n) = 1 − (1 − p(f))n−1 (2.39) 

where p(f) is the probability that m̂ pairs of minutiae are matched between the given fin­
gerprint f and a randomly chosen fingerprint from n fingerprints. 

(mf 

m� m̂ 

p(f) = p(m�) p(fi) 
m̂

· 
m�∈M i=1 � � (m

ˆ
f 

ˆm ) m� m� �� 
= p(m�) 

m̂
· p(xij |Θ) (2.40) 

m�∈M i=1 j=1 

where M contains all possible numbers of minutiae in one fingerprint among n fingerprints, 
p(m�) is the probability of a figerprint having m� minutiae in n fingerprints, mf is the number 
of minutiae in the given fingerprint f , minutiae set fi = (xi1, xi2, ..., xi ̂ ) is the subset of the m

minutiae set of given fingerprint and p(fi) is the joint probability of minutiae set fi based 
on learned generative model. 

Minutiae with Ridge Points. When ridge information is considered, a representative 
ridge is denoted by x = {xm, xr}, where xr = {xr

i : i ∈ {�L/3�, �2L/3�} ∧ i ≤ li}. The 
representative ridge xa matchs the representative ridge xb with tolerance � if 

|xma − xmb| ≤ �m ∧ |xra − xrb| ≤ �r (2.41) 

where |xma − xmb| ≤ �m is define by Eq.2.33 and |xra − xrb| ≤ �r is defined as 

|xra − xrb| ≤ �r ≡ (∀i ∈ A)|ra
i − rb

i | ≤ �r ∧ |φi
a − φb

i | ≤ �φ ∧ |θa
i − θb

i| ≤ �θ (2.42) 
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where A is the anchor point index set and the tolerance can be grouped together as � = 
{�s, �θ, �r, �φ}. 

Then, the probability that a random representative ridge xa would match a random 
representative ridge xb is given by 

p�(x) = p(|xa − xb| ≤ �|Θ)� � 
= p(xa|Θ)p(xb|Θ)dxadxb (2.43) 

xa |xa−xb|≤� 

where Θ is the set of parameters describing the distribution of the representative ridges. 
The nPRC and specific nPRC with ridge information can be caculated by Eq.2.37, 2.39 

and 2.40. 

G. Evaluation with Fingerprint Databases 

Parameters of the two fingerprint distribution models introduced in Sections 2.2.2 were 
evaluated using the fingerprint database FVC2002 DB1 [47]. The number of components G 
for the mixture model was found after validation using k-means clustering. The database 
has 100 different fingerprints with 8 impressions of the same finger. Thus, there are a total 
of 800 fingerprints using which the model has been developed. 

Values of PRC p� are calculated using the formula introduced in Section 2.2.2. For 
comparison, the empirical PRC p̂�(x) was calculated also. To compute p̂�(x), the empirical 
probabilities of matching a minutiae pair or ridge pair between imposter fingerprints are 
calculated first by 

I
1 � m̂i 

p̂�(x) = (2.44)
I mi × m�

ii=1 

where I is the number of the imposter fingerprints pairs, m̂i is the number of matched 
minutiae or ridge pairs and mi and m�

i are the numbers of minutiae or pairs in each of the 
two fingerprints. Then, the empirical PRC p̂� can be calculated by Eq.2.36. 

Both the theoretical and empirical PRCs are given in Table 2.5. The PRCs are calculated 
through varying number of minutiae or ridges in two randomly chosen fingerprint f1 and f2 

and the number of matches between them. We can see that more minutiae or ridges the 
template and input fingerprint have, higher the PRC is. In experiments conducted on the 
FVC2002 DB1, there are some differences between the results obtained here and the results 
in [37]. This may result from use of different matching tolerance, which p�(x) depends on. 
It should be noted that the PRC values with ridge information model are never greater than 
PRC values without ridge information, which indicates that ridge information strengthens 
individuality of fingerprints. Note that the theoritical PRC based on our model are close and 
have the same trend to empirical PRC. The consistency between the theoretical probilities 
and empirical probilities shows the validation of our generative model. The PRCs for the 
different m1 and m2 with 6, 16, 26 and 36 matches are shown in Figure 2.20. It is obvious to 
note that, when m̂ decreases or m1 and m2 increase, the probability of matching two random 
fingerprints is more. 
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Based on the PRC value, nPRC can be computed. Table 2.6 shows the nPRCs in 100, 000 

fingerprints through varying number of minutiae or ridges in each fingerprint m and number 
of matches m̂. 

The specific nPRCs are also computed by (2.39) and given by Table 2.7. Here three 
fingerprints are chosen as query prints and they are shown in Figure 2.21. The first one is a 
full print in good quality, the second one is a full print in low quality and the third one is a 
partial print. The specific nPRCs are calculated through varying number of minutiae/ridges 
in each template fingerprint (m) and the number of matches ( ̂m), assuming that the number 
of fingerprints in template database (n) is 100, 000. The numbers of minutiae/ridges in 3 
given query fingerprint mf are 41, 26 and 13. In 100, 000 randomly chosen fingerprints there 
is only 1.1670 × 10−23 probability that one of them have 12 matches with the fingerprint F1 

if we consider both minutiae and ridge in matching. This probability is much smaller than 
previous minutiae only model which is 5.7637 × 10−14 . 

2.2.3 Likelihood-based Methods for Fingerprint Comparison 

A goal of most AFIS style methods is given an input fingerprint and a template fingerprint, 
to arrive at a binary decision of match/non-match. Along the way typically a score for the 
degree of match between the input and template is computed. This part of the project was 
to study the best way of obtaining such a score so that the decision can be expressed in 
terms of the strength of evidence. 

There has been significant earlier work on automatic fingerprint verification/identification[39]. 
The three main operational steps of automatic fingerprint verification are: (i) feature extraction– 
where a set of features, typically minutiae, are determined from each fingerprint, (ii) matching– 
where a matcher determines the degree of match, or score, between the two sets of features 
and (iii) decision– where the score is used to make the classificatory decision of match/non­
match. The robustness of the method of decision with respect to the quality of the previous 
two steps is pertinent when one or both of the fingerprints do not contain a sufficient num­
ber of minutiae. The focus here is on comparing the performance of two different methods 
of decision for fingerprint verification in the context of varying numbers of minutiae being 
available. 

The commonly used method of making a decision with the score is to determine a thresh­
old from the receiver operating characteristics (ROC), a term that originated from signal 
detection theory [48]. A score above this threshold indicates a matching pair of fingerprints 
and a score below indicates a non-match. The ROC-based strategy learns from a large gen­
eral population of ensemble of pairs of fingerprint samples(training set) and decides on an 
operating point by analyzing the ROC curve. Such a method works well when there is a 
complete and well-registered fingerprint image. 

On the other hand when there exists a partial imprint of a finger—as in the case of 
latent prints in forensics or due to limitations of the biometric device–a method based on 
probabilities may be justified. In such situations it is useful to consider decision methods 
based on computing the likelihood ratio of match/non-match. Likelihood ratio (LR) methods 
have a long history originating in statistical hypothesis testing [49]. LR methods considered 
here model the distribution of distances obtained by comparing the ensemble of pairs of 
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fingerprints using a Gaussian or a Gamma distribution. 

A. Decision Methods 

We used the standard available Bozorth matcher to match two sets of minutiae. Other 
matching algorithms using ridge alignment and matching, such as those discussed in [50] are 
suited more for the 1:N verification problem and when the quality of fingerprint considered 
is good. The Bozorth matcher is superior to that discussed in [50] for the purpose of 1:1 
verification on the FVC2002 dataset wherein the quality of the impressions is poor. By 
using the Bozorth score, one can arrive at a distance space representation of the data that 
characterizes the strength of match between two samples. 

The decision task is to determine from the score of the matcher whether or not the two 
fingerprints belong to the same finger. The ROC method learns to operate at a particular 
threshold by analyzing the ROC curve obtained from comparing a large ensemble of pairs 
of fingerprint samples. The LR method models the distribution of distances obtained by 
comparing the ensemble of pairs of fingerprint samples using a statistical distribution. Both 
methods operate on a distribution of distances obtained by comparing the features of a pair 
fingerprint, which are described in the following section. This paper focuses on the methods 
for automatic fingerprint verification after a set of features have been extracted for each 
fingerprint sample. The features considered here are the set of minutiae extracted for each 
fingerprint sample. Before learning truly begins, these raw samples first need to be converted 
to feature space using a feature extractor. 
ROC Learning 
The ROC curve is obtained for a two category problem by plotting the probability of a 
hit against the probability of false alarm. In a one-dimensional problem, such as a scalar-
valued score or distance, such a plot can be obtained very simply by varying a threshold and 
determining the two probabilities for each value of the threshold. 

The ROC method decides if a pair of fingerprints as belonging to the same finger or 
different, by learning from a large general population of ensemble of pairs. A pair of samples 
either belongs to the same finger or they are from different fingers. Features are extracted 
for each samples, and feature vectors between the two samples in a pair are compared using 
the Bozorth matcher described in Section 2.1.2. The result of such a matching is vector of 
distances, one distance value corresponding to every pair matched. The absolute value of 
these distances help classify whether the two samples in a pair belonged to the same finger 
or not. The ROC based method aims at deciding on a particular threshold in distance that 
separates the pairs that belonged to different fingers from those that belonged to the same 
finger. The score obtained from the Bozorth matcher are such that, generally when the 
samples from a pair truly came from the same finger, the score is higher than if they come 
from different finger. Figure 2.22(a) shows an example of a distance distribution obtained by 
comparing an ensemble of pairs. The threshold to decide for decision is obtained by moving 
the threshold from left to right, and at every point the number of pairs that were decided 
incorrectly is calculated. An incorrect decision can be of two types. 

1. Pairs truly belonged to the different finger but classified as same(False Positive or False 
Alarm). 
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2. Pairs truly belonged to the same finger but classified as different(False Negative). 

In a similar way a correct decision can be of two types. 

1. Pairs truly belonged to the same finger and classified same(True Positive or Hit Rate). 

2. Pairs truly belonged to different finger and classified different(True Negative). 

As the threshold is moved from left to right on the distance scale, one can measure the 
four different variables mentioned above. A plot of Hit Rate(True Positive) against the 
False Alarm(False Positive) is called the ROC curve. Figure 2.22(b) shows a typical ROC 
curve. The best threshold, or the operating point is decided by choosing the threshold that 
gives the least average error. The average error is defined to be the average between False 
Negative and False positive. This definition of the average error gives equal importance to 
False Negative and False Positive. Thus the ROC method learns from a ensemble of pairs 
of training samples to obtain one threshold in distance that it can use to classify a pair as 
belonging to the same or different finger. 

LR Learning This method of learning starts similar to the ROC method. Here again, a 
large ensemble of pairs of fingerprint samples are taken. This training set is divided into two 
categories. Set one consists of pairs of finger print samples where each pair truly belongs the 
same finger. Set two consists of a pairs of finger print samples where each pair truly belongs 
to different persons. Features are extracted for these samples and the Bozorth matcher 
computes a similarity score between the samples of each pair. Let D�S denote the vector of 
distances between all pairs in set one, which represents the distribution of distances when 
samples truly came from the same finger. Similarly let D�D denote the vector of distances 
between all pairs in set two, which represents the distribution of distances when samples 
truly came from different finger. 

Figure 2.23 shows a histogram of these two different distributions. Note that this corre­
sponds to the same data as in Figure 2.22(a) where are the axes are turned around and the 
score values are flipped. 

The next step in the likelihood ratio approach is to model the distributions respresented 
by the histograms. Modeling is essentially one of learning the true distributions underlying 
the data. If we take an approach of modeling the distribution using parametric forms then 
the parameters can be learnt accurately when there are a large number of available samples. 

Two candidate parametric distributions are the Gaussian or Gamma distributions whose 
probability density functions (pdfs) in one dimension are given in equations (2.45) and 
(2.46) respectively: 

2σ2Gaussian pdf: P (d|µ, σ) = √
2

1 

πσ2 
e− (d−µ)2 

, −∞ < d < ∞ (2.45) 

where µ and σ2 are the mean and the variance of the distribution, respectively; and 

1 
Gamma pdf: P (d|α, θ) = 

Γ(α)θ−α 
e−θddα−1 , 0 < d < ∞ (2.46) 
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where α(shape) and θ(width) are the parameters of the Gamma distribution. 

The Gamma distribution was chosen since the matcher always returns a positive score. 
On the other hand a Gaussian pdf assigns non–zero probabilities to negative scores. The 
parameters that need to be learnt for such a model(α and θ for the Gamma distribution) 
are obtained from the mean and the variance of the distribution(µ (mean) and σ (variance)) 
and can be calculated using µ = αθ and σ2 = αθ2 . These distributions are the same-
and different-finger distributions. Figure 2.24 shows the typical distribution p.d.f. curves 
obtained when the similarities are modeled using a Gaussian or a Gamma distribution. 

B. Comparison of Methods 

The decision task answers the question whether or not a given pair of fingerprint samples 
came from the same finger or from different fingers. In forensics, typically one sample in the 
pair can be referred to as the known sample, e.g., from a ten-print card. The other is consid­
ered as the questioned sample. Each of the above mentioned learning strategies can provide 
their own decision answers. The ROC method uses threshold obtained by analyzing the ROC 
curves in the learning phase to answer whether two samples belong to the same finger. This 
task is called 1 : 1 verification. For the learning strategy, the corresponding decision tasks 
involves a pair of finger print samples and calculating the p.d.f. value under each distribution. 

ROC Decision 
Once the optimum threshold has been obtained by analyzing the ROC the decision task is 
easy. For a new pair of finger print samples, features are extracted and a similarity score is 
obtained using the Bozorth matcher. If this score is greater than the threshold, the the pair 
is classified as belonging to the same finger or else different finger. 

LR Decision 

Figure 2.25(a) shows two fingerprint imprint images that are to be verified if they belong 
to the same finger. 

The process of such 1:1 verification starts with minutiae extraction and then computing 
the score d between the features using the Bozorth matcher. From the learning described, 
the likelihood ratio defined as P (DS |d) can be calculated, where P (DS d) is the probability 

P (DD |d) |
density function value under the DS distribution at the distance d and P (DD|d) is the prob­
ability density function value under the DD distribution at the distance d. If the likelihood 
ratio is greater than 1, then the decision answer is that the two samples do belong to the 
same finger and if the ratio is less than 1, they belong to different fingers. Figure 2.25(b) 
shows how the likelihood ratio is obtained. If we wish to do 1 : N verification, there are a 
total of N known samples from a finger(enrolled), then for one input sample, N , 1 :1 verifi­
cations can be performed and the likelihood ratios multiplied. In these circumstances it is 
convenient to deal with log likelihood-ratios rather than with just likelihood ratios. The log 
likelihood-ratio (LLR) is given by log P (DS |d) − log P (DD|d). The decision of same-finger 
is favored if log P (DS|d) − log P (DD|d) > 0, and the decision of different-finger chosen if 
log P (DS |d) − log P (DD|d) < 0. When N of these 1 : 1 verifications are performed these 
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LLR’s are summed and then the decision is taken. 

C. Experiments and Results 

The FVC2002 collection of database were used in the experiments. It contained four different 
datasets within it– Db1,Db2,Db3 and Db4. The four databases, contained fingerprint images 
acquired by different methods. Db3 contained very poor quality fingerprint images, whereas 
Db2 fingerprint image quality was the best. Each database contained a total of 800 fingerprint 
images comprising of 8 samples for each of 100 fingers. From this, a smaller derived dataset 
was made with a total of 80 fingerprint images images containing 8 samples for each of 10 
fingers. Experiments were first performed on the derived smaller set and later on the full 
database. Additionally, experiments were also performed by varying the number of minutiae 
in each database. Figure 2.26(a) and 2.26(b) shows a few sample images from the database. 
For the task of verification, a number of pairs of fingers can be considered. For a given 
finger that has 8 samples, there are 

2
8 = 28 same finger pairs. Hence for all the 10 fingers 

together there are 28 ∗ 10 = 280 same finger pairs. Similarly there are 2880 pairs of different 
finger samples. For the purpose of learning, half of the set was used as the training set 
and the remaining for testing, i.e. 140 samples from same finger pairs and 1440 pairs from 
different fingers were used for the purpose of training. Both the ROC based method and the 
likelihood methods used the same data set for training and testing, in order for them to be 
fairly compared. The first set of experiments were based on using all the minutiae available 
for each sample and the experiments and results are described in section 2.2.3. The second 
set of experiments were based on carrying out fingerprint verification with reduced number 
of minutiae in each sample. These are described in section 2.2.3. 

Experiments with all Minutiae preserved For each of the 4 databases, the training set 
consisted of 140 pairs of same fingers and 1440 pairs of different fingers. Each of these pairs 
resulted in a similarity score as a result of matching the samples in the pair using the Bozorth 
matcher. The remaining pairs were used for testing the accuracy of the model. The average 
error rate, defined as average of False positives and False negatives, is used as a measure of 
the error rate for the model. Figure 2.29 shows the ROC curves learnt from the training set 
of the 4 different databases. Figure 2.30 shows the result of learning the distribution of the 
scores from the training set and modeling them as Gaussian distributions. After deciding on 
the operating point, the thresholds were used to classify the test data set. Similarly the log 
likelihood ratio was used to determine the decision for the likelihood method. Table 2.8 gives 
the error rates on the 4 different datasets for both the ROC based method and the likelihood 
method using Gaussian and Gamma distributions. The decision boundary is given by the 
sign of the log likelihood-ratio, LLR, log P (DS |d) − log P (DD|d). 

The results presented in Table 2.8 show that the likelihood methods, Gaussian and 
Gamma, outperformed the the ROC method. Higher error rates on database 3, is explained 
by the poor quality of fingerprint images in that database. The performance of modeling 
with Gaussian is slightly better than with modeling with Gamma. Although the difference 
is statistically insignificant, it can be explained by the fact that amongst the two models, 
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the Gaussian density for for the P (Ds/d) has a fatter tail towards the origin, and it accounts 
for greater uncertainty in that region. 

Experiments with reduced Minutiae The number of available minutiae in the fin­
gerprints directly affects the extent of match between two fingerprints. Partial fingerprints 
always account for fewer minutiae and we present an approach to simulate the reduced minu­
tiae scenario, which are intended to simulate the effects arising from noisy image acquisition 
techniques. In this approach, minutiae are randomly removed from the set of total available. 
An alternative set of experiments, to consider only minutiae from a region as those available, 
was also performed but briefly discussed due to page limitations. 

D. Randomly removing minutiae 

In this experiment, the process of selecting the minutiae to be removed from the sample 
was done at random. Since the process of removing the minutiae were at random, the 
experiments discussed in this section were averaged over 5 different random seeds. The 
number of minutiae removed from each sample was proportional to the total amount of 
minutiae present in the sample. 

The 80 samples of fingerprints in each of the 4 databases were tampered with by reduc­
ing the number of minutiae in each gradually. When the number of minutiae are reduced 
in the sample, the number of minutiae that match between a pair of fingerprints reduces 
significantly. As a result, there is more uncertainty in the decision. It is seen in our experi­
ments that modeling uncertainty statistically proved better than the traditional ROC-based 
method. As the number of minutiae were reduced, the experiments mentioned in section 2.2.3 
were carried out and the average error rate of the two methods were compared with the av­
erage number of minutiae per sample. 5 different experimental setups were created, each of 
which had on an average 5 minutiae less than the previous setup. Figure 2.27 shows the 
average error rate for each of the databases varying with the average number of minutiae 
present per sample. The size of the training and test set was fixed to be the same as discussed 
in the previous section. It is interesting to note from the figures that the likelihood methods 
perform better when there are fewer number of minutiae available on certain databases. The 
average difference between the error rates between the methods decreased non-linearly as 
minutiae were gradually removed. If more minutiae were included, the difference between 
the error rates of the two methods became smaller. In all cases, modeling the distribution 
statistically was never worse than the ROC-based method. 

The above experiment was performed on a database of all available 800 fingerprint 
images. This gives a better idea about the performance of the statistical methods against 
the ROC based method. The results for the same are shown in Figure 2.31(a). The error 
rates and the standard error of the mean are shown in the corresponding Table 2.9. 
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E. Minutiae from a region 

This experiment was based on the idea of simulating a partial fingerprint. One minutiae 
was chosen at random and N nearest minutiae to this chosen one (based on Euclidean 
distance on location) were said to be the available minutiae. Now when the first chosen 
minutiae is at the edge of the fingerprint, then only minutiae closest to that will be available, 
simulating the effect of having only edge of the fingerprint available for matching. Again 
here, the experimental results were averaged over 5 different positions of the chosen minutiae 
to simulate different regions of partial fingerprint. Figure 2.28 shows the average error rate 
for each of the databases varying with the average number of minutiae present per sample. 
Here again, the likelihood based methods performed consistently better than the ROC based 
methods. Also similar to the previous experiment the error rate increases non-linearly as the 
number of available minutiae are reduced. The experimental results on the 800 fingerprint 
database is shown in Figure 2.31(b). The experiment was carried over 6 different positions 
of the chosen minutiae. The error rates and the standard error of the mean are shown in 
Table 2.9. When very few minutiae are available (26 and 20), the error rate of the ROC 
method is fixed at 50% with no standard deviation. 

F. Experiments with 1:N Verification 

The 1 : N Verification process consists of two steps (i) Enrollment: Here a known set of 
N impressions for a finger are enrolled and labeled so as to belong to that finger, and (ii) 
Authentification: The input impression is compared against all the N enrolled(templates), 
one by one to result in N different scores and the mean of the N score is taken to be the final 
score. Once again, the distribution of these scores can be used to model a Gaussian/Gamma 
distributions. The 80 fingerprint database consisting of 10 fingers, 8 impressions each was 
used as the data set and N = 4 samples were enrolled for each finger. The input fingerprint 
could be of same or different finger. All the remaining fingerprints that were not used for 
enrollment were used for testing. Using the Bozorth Matcher score and with all minutiae 
preserved a verification accuracy of 99.8% was acheived on DB1 of FVC2002. The accuracy 
was consistent across all models(ROC, Gaussian, Gamma) since all minutiae were considered. 
Using the Alignment matching method discussed in [36] along with a few modifications, the 
accuracy was found to be 98.5%. The presene of N templates instead of 1 makes the task 
of fingerprint verification that much easier, as indicated by the high verification accuracy 
rates. For the same DB1 FVC2002 dataset, in the 1 : 1 verification, an accuracy of 96.07% 
was achieved(reported in table 2.8 in section 2.2.3), whereas the 1 : N verification yielded 
99.8%(reported above in this section). 

2.2.4 Use of Ridge Information in Fingerprint Comparison 

Algorithms for fingerprint matching are used in human identification both in biometrics and 
in forensics (latent print and ten-print matching). The structures most widely used by finger­
print matching algorithms are minutiae– which are representations of ridge bifurcations and 
ridge endings. Minutiae-based algorithms with varying accuracy and efficiency are described 
in the literature on automatic fingerprint identification systems (AFIS) [11, 51, 52, 53, 54]. 
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In several scenarios only a partial fingerprint image is available as input, e.g., compact 

silicon chip-based sensors that capture only part of the fingerprint, processing latent fin­
gerprints from crime scenes, etc. The task in such cases is to match an incomplete input 
fingerprint against pre-enrolled full fingerprints. While some minutiae matchers are highly 
accurate in full fingerprint matching, their error rates dramatically increase with decreasing 
number of minutiae. 

To overcome these three disadvantages, we proposed an effective algorithm for using 
ridges– based on utilizing representative ridge points (RRPs). A consideration was that an 
RRP have the same representation as minutiae so that existing minutiae matchers could be 
utilized with simple modifications to benefit from their well–developed tolerance to non-linear 
deformation. Since the addition of ridge points increases computation time significantly, a 
ridge point selection scheme is proposed, through which only one representative ridge point 
(RRP) is selected per ridge. Experiments demonstrated the effectiveness of using RRP for 
fingerprint matching as for the three disadvantages above. 

The rest of this section is organized as follows: (i) relationship between available number 
of minutiae in the input, the number of matching minutiae and identification accuracy, (ii) 
alignment based on ridge similarity together with its drawbacks, (iii) RRP and how to utilize 
RRP on existing minutiae matchers, and (iv) results of comprehensive experiments performed 
to determine the effectiveness of the method for full and partial fingerprint matching. 

A. Partial Fingerprint Matching 

Although some minutiae-based matching algorithms [11, 53, 52] are designed very well with 
satisfactory accuracy as well as efficiency, degradation in the performance of minutiae-only 
algorithms with decreasing number of minutiae is well-known [52]. In order to systematically 
study this effect one can generate fingerprint image snippets with progressively fewer numbers 
of minutiae as shown in Fig. 2.35(b)-(f)). In the last two of these there is also a loss of 
singular points (core and delta)(see Figs. 2.35(e) and (f)). In this effort our focus is on the 
effectiveness of using RRP for fingerprint matching when the number of available minutiae 
decreases in partial fingerprints with fair image quality, but not coping with the latent partial 
fingerprints in real forensic cases with very poor quality. So, we simulate partial fingerprints 
by cropping full-sized images with fair image quality. 

The relationship between the number of available minutiae in the input to (i) the number 
of matching minutiae, and (ii) genuine error rate are illustrated in the chart of Figure 2.34. 
Partial images used to generate results shown in this chart were similar to those shown in 
Figure 2.35– which were generated from the NIST FVC2002 databases – using methods 
described in Section 2.2.4. The capacitive sensor resulted in more false minutiae and is 
therefore more similar to latent prints. 

The average number of matched minutiae in DB1 and DB3 (when 15 minutiae are avail­
able) are only 10.92 and 7.98 respectively. From the “12 Point Rule” [56], the discriminative 
power of minutiae is insufficient for reliable verification. Although some commercial fin­
gerprint scanners give a positive match with as few as eight minutiae [57], they require a 
high quality image– which is not always available in latent prints. Therefore, more features 
should be utilized in partial fingerprints to increase the discriminative power of fingerprints, 
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especially for partial ones. Since singular structures such as core and delta are unavailable in 
partial prints, general ridges need to be considered. Human examiners are known to utilize 
general ridges [58] which are always available in fingerprints. This leads to the consideration 
of using ridge information in addition to minutiae. 

B. Prior work in use of ridge information 

Ridge related Symbol Definition 
In fingerprints, ridges are more general features than minutiae and singular points (e.g. 

core and delta). Firstly, we introduce some symbol definitions. 

1.	 d: Average inter-ridge distance. Average distance between two directly nearby ridges. 
Normally, d is measured in pixel distance and could estimated from image samples in 
a fingerprint database (e.g. In FVC2002, d is about 11 pixel distance). Ridges are rep­
resented by points sampled at the average inter-ridge distance along the ridges(Figure 
2.32(a)). d depends on the resolution of a fingerprint image. 

2.	 Li : Number of ridge points that could be sampled on the ith ridge in a fingerprint. Li 

could also be considered as the length of the ith ridge (measured in units of d). 

3.	 L : Average number of ridge points that could be sampled on those longest ridges in 
fingerprints. L is defined for normalized ridge representation : on ridges whose Li is 
larger than L, we sample up to L ridge points. L will play an important role in the 
selection of optimal ridge points. Like d, L could also be estimated from image samples 
in a fingerprint database. However, unlike d, L does not depend on image resolution, 
but depends on how much region of a finger is captured in a fingerprint image. Rolled 
full fingerprints will have larger L than flat full fingerprint. For flat full fingerprint, L 
could be considered as a constant, because the flat region of a finger that could be put 
on a sensor does not vary much. (e.g. In FVC2002, L is about 18). 

A ridge associated with minutiae Mi is represented by points sampled at the average 
inter-ridge distance d from minutia Mi along the ridges as 

Ri = {Pi1, Pi2, . . . , PiLi }	 (2.47) 

where Pij represents the jth ridge point sampled on ridge Ri. 

Previous Models Using Ridges 

As minutiae pair, minutiae triplet and K-neighbors minutiae introduced in Section ??, ridges 
have also been utilized as local model [13, 14]. The following two measurements for ridge 
similarity are used in [14]: 

Lmin1 � 
Diffdist(Ri, Rj ) = |Dist(Pik,Mi) − Dist(Pjk,Mj )| (2.48)

Lmin 
k=1 
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Lmin1 � 

Diffang(Ri, Rj ) = |Ang(Pik,Mi) − Ang(Pjk,Mj )| (2.49)
Lmin 

k=1 

where Lmin is the minimum of Li and Lj . Dist(P, M) represent the distance between ridge 
point P and minutiae M . Ang(P, M) represents the angle between the direction of the line 
segment MP and the orientation of the minutiae M . If the Diffdist(Ri, Rj ) and Diffang(Ri, Rj ) 
are respectively within two thresholds, the two ridges Ri and Rj are considered to be similar 
enough. Such a ridge pair is used for fingerprint alignment. With the alignment decision, 
minutiae are converted into polar coordinates and then an adaptively compensating dynamic 
programming algorithm [13, 55] could decide the number of matched minutiae pairs. This 
model is efficient because the use of ridge similarity for alignment avoids an exponential 
search for point correspondence. Along with efficiency is the guarantee of reliable align­
ment, since minutiae matching depends on alignment. Although the matching stage could 
adaptively tolerate non-linear deformation and inexact pose transformation [13, 14], a sharp 
alignment error (Figure 2.32(b)), would exceed the tolerance of the minutiae matching stage 
and lead to a meaningless low score for an identical pair of prints. 

A straight-forward solution is to use a tight threshold on ridge pair similarity. However, 
when there is a strong non-linear deformation of the fingerprint image, a tight threshold will 
result in no alignment– an identical pair will be assigned a zero score. Another approach 
is to use the most similar ridge pair– which may still offer a wrong ridge pair. This leads 
to the dilemma that a loose threshold would cause two similar but different ridges to be 
considered identical, while a tight threshold would not get an eligible ridge pair for alignment. 
Therefore, it is so difficult or impossible to find a proper threshold that could guarantee a 
true alignment and tolerate ridge deformation at the same time. One major cause is that 
the original alignment scheme [13] is based on a single ridge pair– with a risk that the pair 
of ridges chosen as being similar is wrong. The alignment scheme is improved by using 
multiple ridge pairs for alignment with a constraint that those pairs must share a similar 
transformation vector [13]. Although the modified matcher performs much better, it is still 
worse than Bozorth [11] and a compound minutiae matcher [53] which use minutiae only. 

In [15], singular points such as delta and core are used to reduce the risk of false alignments 
resulting from unreliable ridge similarity. However, singular points are not guaranteed to 
exist in partial fingerprints, which limits the use of [15]. 

In [16], Hough Transform is used to approximate each ridge with a group of straight 
lines, all detected Hough space peaks are then used to estimate the rigid transformation 
parameters between the query and the template fingerprint images. After the alignment, 
a matching score is computed from a matrix of ridge alignments. Although the fingerprint 
verification accuracy in [16] is improved by this means, the matching run-time is, in the 
meanwhile, increased a lot. 

In [17], ridges are not only used for fingerprint alignment, but also for later matching 
score computation. The computational complexity is very high because all sampled ridge 
points in a fingerprint are used for matching. What’s more, the proposed algorithm requires 
a fairly high number of available minutiae in a fingerprint, so it will not be competent for 
partial fingerprint matchings. 

In [18], a deformation model is developed for estimating the distortion effects in finger­
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print impressions based on ridge curve correspondence. The proposed model was observed 
to result in a better performance compared to a model based on minutiae pattern corre­
spondence. This fingerprint warping model is largely defined by the reliability of minutiae 
point correspondences generated by the algorithm. In partial fingerprint matching, minutiae 
matcher could not provide reliable minutiae correspondences, which will therefore limit the 
use of [18]. 

In the most recent work [59], ridge contours are used together with pores as level 3 
features for more reliable matching of high resolution fingerprints. In this paper, we only 
focus on fingerprint matching with level 2 features. 

There are three drawbacks in previous usages of ridge information: 

1. Vulnerability under non-linear deformation, and not reliable for fingerprint alignment. 

2. Trying to solve the first drawback mostly induce high computational complexity. 

3. Unscalable for partial fingerprint matching. 

Vulnerability under Non-linear Deformation Theoretically, increasing the number of 
features should not lead to worse performance. Practically, the method of utilizing ridge fea­
tures is the key. Bozorth and the compound minutiae (or k-minutiae) matcher (also called 
CBFS [53] for coupled breadth first search) first compute local similarity and then perform 
global consolidation. The local features of Bozorth, compound minutiae matcher, and an­
other based on triplets [52] are compared with the ridge similarity model in a fingerprint 
image in Figure 2.32(c). The boxes A, B, C and D could be considered as four types of 
local features. Clearly, an entire ridge such as D covers a large region. Conversely, the local 
similarity models defined as A, B and C are all within a relatively smaller region. In imple­
mentation, Bozorth only considers a minutiae pair if their distance is within a threshold [11]. 
The compound minutiae matcher uses k minutiae to control local region size and a variation 
uses only a triplet [52]. Several high accuracy minutiae matchers define local feature model 
within relatively small regions [60, 54]. Variety of non-linear deformation increases together 
with region size. So, local feature similarity defined on a larger region is more vulnerable to 
non-linear deformation. This essential weakness prevents ridge similarity model from bet­
ter performance. A seeming solution is to divide entire ridges into several shorter ridges. 
However, a disadvantage is that, shorter ridges tend to be similar, because the longer a 
ridge is, the more variety it could have. Many shorter ridges divided from entire ridges tend 
to be short straight lines, thus could not be relied on for alignment decision. This is also 
why the ridge similarity model is not used in partial fingerprint matching. With the fact 
that using ridge similarity is blocking us from further improvement. An effective method is 
to utilize ridges for matching by means of representative ridge points (RRPs), which could 
avoid alignment using entire ridges. 

High Computational Complexity In order to to solve the first drawback, most previ­
ous use of ridge information tend to induce high computational complexity. In [16], Hough 
Transform brings on a large number of straight lines to approximate ridges in a fingerprint 
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and the computational complexity in the alignment stage is increased a lot. Minutiae match­
ing is essentially a directed point pattern matching problem [13]. This implies that, if all 
sampled ridge points in a fingerprint are used for matching as in [17], the computational 
complexity in the matching stage will tend to be unacceptable. 

Unscalable for partial fingerprint matching Ridge similarity models [13, 14, 16, 15] 
prefer long ridges in order to offer reliable alignment based on the decision that whether two 
ridge are similar or not. However, in partial fingerprints, most ridges are shorter than those in 
full prints. Therefore, ridge similarity will be further impaired and could not provide reliable 
alignment decision. The ridge warping algorithm [18] depends on a pre-computed minutiae 
correspondence, which implies that, in partial fingerprint matching, low number of available 
minutiae will weaken the effectiveness of the model. So, most previous algorithms using 
ridge information have not been designed to be unscalable for partial fingerprint matching. 

Our Motivation Motivated by the above three drawbacks of previous works making use 
of ridges, the algorithm we are going to propose is specially designed to tolerate non-linear 
deformation. In the meanwhile, we try to realize the tolerance only by introducing acceptable 
run-time increment. What’s more, our algorithm is also naturally competent for partial 
fingerprint matching. 

C. Representative Ridge Points 

Minutiae represent only a portion of the discriminative information present in a fingerprint. 
Fig. 2.33 illustrates that, the match of two ridges is not reliable if we only use minutiae 
location and orientation as the criteria. Human examiners utilize general ridge information 
as described in the forensic friction ridge analysis literature [58]. As in Figure 2.36(a), two 
genuine fingerprints have not only matching minutiae but also matching ridges. However, 
there are no minutiae in each of the regions represented by the five boxes, which means 
minutiae could not capture the matching of two genuine fingerprints in these regions, where 
only ridges exists. In light of the discussion in Section 2.2.4, it is too risky to use ridge 
similarity in the alignment stage. Thus it was decided to try using ridge features in the 
matching stage. Some existing minutiae matchers have already been designed very well 
to tolerate non-linear deformation and make accurate decisions. So, it is expected that 
ridges could be input into such minutiae matchers. Ridges are represented as sampled 
ridge points as in Figure 2.32(a). If each ridge point is assigned a direction according 
to the ridge flow(towards minutiae) in the ridge point, ridge points will have exactly the 
same representation as minutiae. Although when both minutiae and ridge points could be 
directly input into minutiae matchers, unacceptable run-time will be an obvious problem. 
Apparently, it is not necessary to use all ridge points. A fingerprint is a smoothly flowing 
pattern of alternating ridges and valleys [61]. Ridge points that are close to each other tend 
to be implicated(infer position and orientation) from each other. Therefore a fingerprint 
feature called representative ridge point (RRP) is introduced– which only uses several or 
even one sparse representative ridge point(s). 
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Basic RRP Selection Scheme As defined earlier, a ridge associated with minutiae Mi is 
represented as Ri = {Pi1, Pi2, . . . , PiLi }. Starting from minutiae Mi, each ridge point is given 
an index i ∈ {1, . . . , Li}. All the indices could be represented as a set I = 1st , 2nd, . . . , Lth 

(L is defined in Section ??). 
For all fingerprints, the RRPs are selected according to a pre-determined subset of I. We 

use IRRP to represent this subset. For example, if IRRP is decided to be k1 
th, k2 

th , then the 
k1 

th and k2 
th ridge point is selected from all ridges. The goal is to choose the indices such that 

a majority of ridges will contain these ridge points. 
Under this selection scheme, through proper transformation (shift and rotation) [13], a 

genuine ridge pair will simultaneously have overlapping minutiae and overlapping RRPs. 
This is guaranteed by the fact that we use a pre-determined index subset IRRP for all 
fingerprints. Suppose different indices are selected for different ridges, it is easy to imagine 
that genuine ridges would not be guaranteed to have overlapping RRPs. For two different 
ridges, with the pre-determined index subset IRRP , it is less unlikely that they simultaneously 
have overlapping RRPs and overlapping minutiae, although they might occasionally have 
overlapping RRPs or overlapping minutia separately. “Overlap” is defined to be within a 
certain bounding box [13, 14] but not exactly overlapping because of non-linear deformation. 
Figure 2.36(a) illustrates the potential effectiveness of RRPs in a global view: when two 
fingerprints match, ridges will also match which means RRPs will match too. Although in 
some cases, two different fingerprints might have many occasionally overlapped minutiae, it 
will be difficult for this pair to also have many overlapping RRPs at the same time. Figure 
2.36(b) is an example of RRPs, in which IRRP = 6th , 12th . Figure 2.36(b) also shows 
the regions that are originally ignored by minutiae (there are no minutiae inside any of the 
five boxes), currently could be characterized by RRPs. After the bringing RRPs as new 
fingerprint feature, a fingerprint contains ridge endings, ridge bifurcations and RRPs, while 
originally, only ridge endings, ridge bifurcations are defined (See Fig. 2.2). In other words, for 
ridges in two fingerprints, both minutiae and some predetermined RRP overlapping indicates 
a more possible match than just the minutiae overlapping. But too many RRPs could also 
add redundant information. Two key concerns about selection of RRP are: 

1. How many RRPs should be selected per ridge? 

2. Which ridge points should be selected as RRPs? 

Extensive experiments were conducted to answer the two questions. Before that, the 
selection of RRPs is described from a theoretical perspective. 

How Many RRPs should be Selected per Ridge? It can be shown that only one 
RRP needs to be selected per ridge. The reasons explained below highlight two basic points 
(i) fewer RRPs are required for lower time complexity and (ii) fewer RRPs (as low as just 
one) suffice since it is redundant to have many RRPs. 

Theoretically, in order to assure accuracy, all the ridges points should be used with 
minutiae together as inputs to minutiae-based matcher. However, considering run-time, the 
number of selected ridge points should not be too high. Therefore RRP selection should be 
such that a satisfactory matching accuracy is obtained with the fewest RRPs per ridge. 
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The time complexity of minutiae matching is no less than O(n3) when both fingerprints to 

be matched have exactly n minutiae. This can be seen as follows. In the pairwise local model 
[11], each intra-table construction involves O(n2) comparisons and the inter-table match has 
more than O(n) comparisons. The k minutiae model takes O(n) to build the local models 
and O(n2) for coupled breadth-first search. 

If |IRRP | = k, which means, on each ridge, k ridge points are selected as RRP (for now, 
we temporarily assume that all ridges are long enough to have all the k ridge points), the 
overall number of inputs (minutiae and RRPs) to minutiae-based matcher is n + nk (number 
of ridges equals to number of minutiae). Therefore, the new time complexity of minutiae-
based matcher will be no less than O((n(1 + k))3). The effect of k should not be neglected 
because the number of minutiae n is around 50 and (1 + k)3 will be on the same level when k 
increases. Table 2.10 displays both the theoretical and actual run-time increment according 
to the increases of k (number of RRPs selected per ridge). Even though the practical run­
time is much less than the theoretical run-time (factors influencing practical run-time will 
be introduced in Section ??), it is clear to see that, there will be huge run-time increment 
when more than one RRP are used for matching. Therefore, we prefer to select only one 
RRP per ridge. Is one RRP sufficient to represent a whole ridge? Which RRP should be 
selected? We will show in the next section that an intelligent way to select this one RRP 
sufficing to approximately implicate(infer) the other RRP’s. 

Which Ridge Points should be selected as RRPs? A friction ridge pattern consists 
of smoothly flowing alternating ridges and valleys [61]. Ridge points tend to be implicated 
(position and orientation) by their neighbors on the same ridge. A ridge Ri as defined in Equ. 
2.47 is shown in Fig. 2.37(a). Suppose the kth ridge point is selected as RRP. Note that now 
only the minutia Mi and the ridge point Pik are available (See Fig. 2.37(b)). The length of 
that ridge segment between Mi and Pik is kd (ridge points are sampled at average inter-ridge 
distance d from minutia along ridge). It is possible to infer the approximate shape of the ridge 
between the minutia Mi and the selected ridge point Pik : Fig. 2.37(c) shows four candidate 
types for the approximate shape of the ridge segment of length kd and fixed positions of 
both the two end points. Because fingerprint ridges are smoothly flowing patterns, so that 
only these four types are possible. Please note that, in (c), we are only considering the four 
possible candidates because we only care about the approximate ridge shape types. Slight 
shakes on ridge shapes are not interesting here because, given the existence of non-linear 
deformation in fingerprint impressions, it is irrational and impossible to use a strict criterion 
such as ridge similarity to say whether two ridges are identical or not. Instead, we use the 
basic ridge type (e.g. one/two turn) to classify all possible ridges connecting a minutia and 
a ridge point. Admittedly, there might be other possible ridge shape types, e.g. in core and 
delta region, ridges may have very sharp turns or more than two turns. However, in most 
cases, fingerprint ridges are smooth flowing patterns with seldom sharp turns, and unlikely 
have more than three turns. So, we are only considering the four possible candidates in 
Fig. 2.37(c). Among these four types, only one shape(B) satisfies the given orientations 
of both Mi and Pik (See Figure 2.37(c)). Hence, minutiae Mi and ridge point Pik suffice 
to approximately infer the shape B (Due to frequent non-linear deformations existing in 
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fingerprint images, it is sufficient to infer only a approximate shape). The above statement 
holds good for each k ∈ [1, Li]. Therefore, to approximately infer the entire ridge, the Mi 

and the last ridge point PiLi are needed. 
The above example gives the intuition that by adding ridge point information (posi­

tion/orientation), we can approximately infer the ridge shape together with the minutiae. 
Then we say that the index to be used for RRP selection should satisfy the following two 
conditions: 

1. The index should be	 large so as to infer as many other ridge points (by inferring 
approximate shape of ridge segment up to that index) as possible, which has just been 
shown (from the view of a single ridge). 

2. A common index will be used for all ridges in the fingerprints to be matched (it is 
inconsistent for matching if different indices are chosen for different ridges (as explained 
in Section 2.2.4). The index should not be too large because the majority of ridges are 
not expected to be long enough to have ridge points with the pre-determined index 
(from the view of a fingerprint with many ridges with different lengths). 

Procedure to Extract RRPs The process of extracting RRPs from fingerprint images in­
volves five operational steps: image enhancement, skeletonization, minutiae detection, ridge 
point detection, and RRP selection. The result of each operation is illustrated in Figure 
2.38. Salient points of the five procedures are as follows. 

1.	 Fingerprint Image Enhancement: Enhancement can amplify the effectiveness of RRPs 
because discontiguous ridges could be connected and therefore extracted ridge points 
and selected RRPs are more accurate. Many fingerprint image enhancement algorithms 
have been proposed [62, 63, 64, 65]. After the enhancement, binarization is performed 
as input to later skeletonization. 

2.	 Ridge Skeletonization: Skeletonization is a process for reducing foreground regions in a 
binary image to a skeletal remnant that largely preserves the extent and connectivity 
of the original region while throwing away most of the original foreground pixels [66, 
67]. Through skeletonization, foreground regions in a binary image or silhouette could 
be thinned to a one-pixel width spine. The Matlab image processing toolbox [68] 
provides support for skeletonization via the bwmorph function. Ridge skeletonization 
is preparation for ridge points detection. 

3.	 Minutiae Detection: Introduced in Section 2.2.4. 

4.	 Ridge Point Detection: Firstly, decide d–average inter-ridge distance and then sample 
ridge points starting from each minutia along ridge, each step goes d distance. Each 
ridge point (ith) is assigned a direction according to the ridge flow (towards minutia) 
in the ridge point, or could be approximated by the direction of the arrow from the ith 

ridge point to the (i − 1)th ridge point on the same ridge. 

5.	 RRP Selection: With the scheme described in the first two parts of Section 2.2.4). 
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Minutiae matcher modification If minutiae and RRPs are directly used as input, a minu­

tiae matcher will mistakenly consider a minutia and the selected RRP(s) in the same ridge 
as identical pair, which is wrong. Therefore, we modified the minutiae matcher into a two-
phase matcher. The motivation for using a two phase matcher is from the fact that Ridge 
points strengthens individuality of fingerprints. For two fingerprints to match, its not neces­
sary that some minutiae alone match, but also their corresponding ridge match. Hence, 
in the first phase we match only minutiae and in the second phase, we include additional 
constraint that the corresponding ridges of the matched minutiae must also match. Thus, 
three constraints should be modified in a minutiae matcher. 

1. Minutiae could only match with minutiae. 

2. An RRP could only match with an RRP with the same ridge point index.	 (e.g. A 
6th RRP could only match with another 6th RRP, but not with a RRP with any other 
index.) 

3. The RRPs should be	 matched only after the corresponding minutiae haven been 
matched. 

With the guideline for RRP selection and matcher modification,a group of minutiae based 
minutiae could be improved to have more accurate performance conveniently. 

D. Experiments and Results 

Bozorth and k-minutiae were designated as matchers that use only minutiae. For parameter 
k in k-minutiae matcher, 8 is used for matching with only minutiae, and 10 is used for 
matching with minutiae+RRP. The reason is that, when having more points, k should be 
increased so that k-minutiae model could still cover local regions of a similar area as originally 
covered only by minutiae. FVC2002 are used for full fingerprint matching. Each database 
consists of 800 images (100 distinct fingers, 8 impressions each). Before using MINDTCT [11] 
to detect minutiae, [62] is used for fingerprint image enhancement. Extensive experiment 
are conducted for both full fingerprints and partial fingerprints in this section. For full 
fingerprints: 

A. Testing of varing performance of RRP by using different RRP index selection schemes 
that include: 

1. Pre-determined RRP index 

2. Dynamically selected RRP index 

3. Empirical RRP index 

B. Testing of efficiency performance of using RRP. 
One important note is that, for an existing algorithm, we are comparing its performance 

with RRP and without RRP as input, but not between different algorithms. Even those 
state-of-the-arts algortihms that have not been tested in our paper are expected to have 
better accuracy than themselves when having RRP as input together with minutiae. 
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Full fingerprint matching 
We mentioned earlier two key concerns about using RRP for fingerprint matching and 

theorectical analysis was perposed on how many RRP should selected and which one or ones 
should be selected. In this section, we will conductexperiment to explore the performance of 
RRPs. 

Testing of Varing performance of RRP 
Due to the difference of fingerprint textures and image qualities among data sets, RRP 

selection is dependent on data sets. The average inter-ridge distance is about eleven pixels in 
FVC2002, and an entire ridge normally has more than 12 ridge points. Figure 2.39 showing 
the ridge length statistics for the FVC datasets. Besides the average ridge length for all 
800 images in each data set, more robust median, complemented by the interquartile range 
(IQR) is also considered as a dispersion measure. Note that in fact, the levels induced by 
the medians sometimes differ from the ones based on means which are possibly biased by 
extremely short or long ridge. The statistical information could be a help to select RRP 
index which is thus based on the comprehensive consideration of the Mean and IQR. The 
median levels being above than means, indicates that the average ridge length might be 
biased by short ridges, for example in DB1, together with small lower IQR further prove 
that there exist relatively short ridges (with no more than 6 ridge points). Also for DB3, 
the ridge lengths are distributed more evenly (mostly short ridges means low image quality) 
due to comparative IQR and std range. 

For Bozorth, the matching scores come directly from Bozorth’s outputs when having 
both minutiae and RRPs as input. For k-minutiae, a score-level fusion is used for both (i) 
k-minutiae outputs when having only minutiae as inputs, and (ii) k-minutiae outputs when 
having both minutiae and RRPs as inputs, using the sum rule and min-max normalization 
[69]. RRPs alone are not used for matching since they do not have as much discriminating 
power as minutiae. The RRPs are used to assist matching originally done only by minutiae. 
For each database, 2800 genuine comparisons were selected (each impression of a finger is 
compared with the rest of the impressions resulting in (8x7)/2 tests per finger) and 4950 
impostor pairs(the first impression of each finger is compared against the first impression of 
all other fingers resulting in a total of (100x99)/2 tests). 

Single RRP with pre-determined Index Without lost of generality, we test the per­
formance by selecting different RRP index at a time. In our experiment, RRP index ranges 
from 2 to 14. Equal Error Rate comparison on all the four databases in FVC2002 are shown 
in Table 2.11. In all four cases, both Bozorth and k-minutiae are improved by using minutiae 
and RRPs together. 

Single RRP with Dynamically-selected RRP Index From the experiment of using 
single RRP with pre-determined index, due to different qualities among fingerprint image 
data sets, the selection of RRP is not indepentent. Figure 2.40 shows the EER vs different 
RRP indices. Becasue of the varing length of ridges in the fingerpints images, the matching 
results could still be improved by selecting different RRP index on the fly. In other words, 
we avoiding choosing a common RRP index for all the 7750 comparisons (7750 pairs of 
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images). For every pair of fingerprint image, a perticular RRP index is selected basing on 
the ridge information on both images. The advantage of this is that specific ridge infomation 
is considered for every pair of matching instead of using a general pre-selected RRP, the result 
should be better. There could be many ways to select one reasonable index for both images 
to be compared. For example, the minimal value of average ridge length for both fingerprint 
can be selected as the RRP index. However, there exists extreame short or long ridge, that 
could significantly affect the average right length. In Figure 2.39, for example in DB1, as we 
mentioned, except for few short ridges there are more ridges that have over 11 ridge points 
than those having less than 11 ridge points. Thus, to select a feasible RRP index, we use the 
upper quatile ridge together with the average length in both images to be compared. That 
is, for every comparison, we select the index i on the fly in equation 2.50 

Mean + UpperIQR 
i = [ ] (2.50)

2 
And for all matchings hybrid RRPs are used. Table 2.12 shows the Equal Error Rate 

is further improved compaired to the best results from using a pre-determined RRP index. 
The ROCs curves are also shown in Figure 2.41 and the comparison will be given in the 
coming section. 

Single RRP with Empirical Index The experiment of dynamicly selecting RRP index 
demonstrate the signficant power of using minutiae and RRPs together. But a tradeoff 
has to be balanced between the two conditions above. By pre-determined RRP index, the 
sacrifice of a little bit accuracy wings a lot of time, since statistical ridge information needs 
to be extract beforehand if we want to selecting the RRP index dynamicly. Together with 
another practical concern that the image quality is poorer in periphery of fingerprints than 
inner region, and that, ridges with large indices (those that are long ridges) mostly exists in 
periphery of fingerprints, we recommend to use an fix index i as given in equation 2.51 

2 
i = [ L] (2.51)

3 
This theoretical recommendation was also seen to be better empirically. In previous 

section, we propose the hybrid selection scheme base on the ridge statistic information in 
FVC2002 in Figure 2.47. The overall ridge length distribution for all four data sets indicates 
matching with minutiae and 12th RRPs would be the best in FVC2002 databases (12 is just 
[2
3 L] in FVC2002 where L = 18). For full fingerprint matching, since L does not change very 

much among different databases (see the definition of L), the 12th could be directly used. 
As for partial fingerprint matching, most fingerprints do not have the 12th RRPs because 
of smaller sizes and therefore smaller L. It is more accurate to decide L for equation 2.51 
according to each individual partial fingerprint. However, it implies recording in the template 
database, for each full fingerprint, all RRPs. This is not feasible considering storage. 

As a tradeoff, for template databases(database with full fingerprints), it was decided to 
only extract and store the 6th and the 12th RRPs. The 12th RRPs will be used when the input 
fingerprint is a full fingerprint and the 6th RRPs will be used when the input fingerprint is 
partial. For special cases such as: partial fingerprints with only 10 available minutiae (most 
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are too small to have even the 6th RRPs), RRPs with even smaller index such as the 4th 

have to be used. A course method to determine whether a fingerprint is full or partial, is 
by counting the number of minutiae available and compare to a threshold. The specific 
threshold depends on average number of minutiae of fingerprints in a particular scenario. 

The Equal Error Rate comparison on all four databases in FVC2002 with using the hybrid 
RRPs and RRP with empirical index are already shown in Table 2.11. Both From the view 
of confidence interval [70], for Bozorth, all the four improvements resulting from utilizing 
RRPs are significant with 95% confidence, and for k-minutiae, the improvement on DB3 is 
significant with 95% confidence. Figure 2.41 shows the ROCs on each of the four databases 
with the 12(th) ridge points are used and also with dynamically selected RRP. It is observed 
that every ROC of using minutiae and RRPs together is totally above its corresponding ROC 
of using minutiae only. The coming partial fingerprint matching experiments demonstrate 
the even more significant effectiveness of using minutiae and RRPs together. 

Testing of Efficiency performance of RRP 
As analyzed in Section ??, the theoretical time complexity of minutiae-based matcher 

having n minutiae and k RRPs per ridge as inputs is O((n(1 + k))3), with the assumption 
that all ridges are long enough to have all the k RRPs. Besides the theoretical run-time 
computed by algorithm complexity, some other factors also influence actual run-time. 

1. When minutiae and only one RRP ([
2 
3
L]th) per ridge are used, experiments show that 

2about half of ridges are long enough to have the [
3

to minutiae matchers, which is number of minutiae plus RRPs, will be +n 
L]th RRP. Therefore the size of input 

31 
2
n =


2
n.


When more and more one RRPs are selected per ridge, the chance for ridges to have

those RRPs with small indices also increases together. Therefore, the size of input to

minutiae matcher will be n +
1 

2
n + (k − 1)n = n(k −
1 

2
n) for k > 1.


2. When selecting k RRPs per ridge, we do not have to input all minutiae and all RRPs 
together into a minutiae matcher. A better option is to input them in k rounds. In 
each round, we only input minutiae and RRPs with a single index. We then do score 
fusion [69] with the k outputs of the k rounds. RRPs alone are not used for matching 
since they do not have as much discriminating power as minutiae. RRPs are used to 
assist matching originally done only by minutiae. With this method, the run-time of 
using more than one RRPs per ridge will be reduced from O((n(1+ k))3) to O(k(2n)3). 
Although it is still unacceptable to use a large k in most usages requiring high efficiency, 
it is not a bad idea for some particular usages that do not care much about run-time, 
e.g. matching one fingerprint with several potential genuine candidates. 

3. After the modification to minutiae matcher as described in Section ??, the actual run­
time will be less because minutiae matcher will quickly deny some pairs to match such 
as one minuta with one RRP or two RRPs with different indices. The influence of this 
factor to actual run-time depends on how early an ineligible pair could be denied, and 
therefore depends on different minutiae-based matchers. 

According to the three factors above, the actual run-times are listed in the last two rows 
of Table 2.10. Note that, the empirically actual run-time of using minutiae and only one 
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RRP ([2

3 L]th) per ridge is about twice of run-time of using only minutiae, which is acceptable. 
The practical run-time of using k (k > 1) RRPs per ridge, is estimated to be O(1

2 k(2n)3) 
where k(2n)3 is explained in the second factor and 1

2 is an estimation from the third practical 
factors, which actually depends on different minutiae-based matching algorithms. 

Partial fingerprint matching Firstly, it does not matter which fingerprint database we 
use, because every algorithm will be compared with itself on a number of partial fingerprint 
databases. Our hightlight is the different performances when matching with or without RRP 
as input. Secondly, we are focusing on the effectiveness of using RRP for fingerprint matching 
when number of available minutiae decreases in partial fingerprints with fair image quality, 
but not coping with the latent partial fingerprints in real forensic cases. So, we simulate 
partial fingerprints by cropping full-sized images with fair image quality with the method 
designed to generate partial prints from full prints by cutting out portions of it: (i) To 
begin, a random minutiae is chosen. (ii) Next, its (N − 1) nearest neighbors are selected. 
(iii) Finally, a region is cut-out as a partial fingerprint with a bounding box that only contains 
N minutiae. The size of partial fingerprint is controlled by varying N (number of available 
minutiae in partial fingerprints). In the experiments, N increases from 15 to 35 with a step 
of 5. 

Although the 4th, 5th, 6th, 7th and 8th RRPs for these five levels (recall [2
3 L]) should be 

used, with storage considerations (as discussed in section ??) the 6th RRPs were used for 
all five levels of partial fingerprint matching. Bozorth and k-minutiae are tested on partial 
fingerprint databases generated from FVC2002 Database, which have respectively the best 
and the worst image quality [44] in FVC2002. Because the initial minutiae when simulating 
partial fingerprint is randomly selected, three partial databases were generated for each value 
of N and then three EERs are averaged. In each database, number of genuine pairs and 
impostor pairs used for partial fingerprint matching are respectively 5600 and 9900 (twice 
the number in full fingerprint matching, because in partial fingerprint matching, fingerprint 
pair P1(a partial print of fingerprint F1 and fingerprint F2) is different from fingerprint pair 
P2(a partial print of fingerprint F2 and fingerprint F1). 

Equal error rates (EERs) for partial fingerprint matching are shown in Table 2.13. All the 
EERs are plotted in Figure 2.42, from which it is seen that significant and stable improve­
ments by using minutiae and RRPs together for partial fingerprint matching. Although some 
algorithms designed specially for partial fingerprint matching [52] have similar EERs using 
only minutiae, the highlight of this work is that, for a given minutiae matcher, improvement 
obtained by using both minutiae and RRP are even more significant in partial fingerprint 
matching than in full fingerprint matching. 
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2.3 Results 

2.3.1 Statement of Results 

Twin’s Study 

A study of the discriminability of the fingerprints of twins has been presented. Using a larger 
set of samples than used in previous studies, the similarities of the fingerprints of twins was 
studied. Live scans and younger ages of the subjects ensured good quality prints thereby 
allowing the focus to be on the inherent individuality of fingerprints and one that was not 
affected by image quality issues. 

Two studies were conducted using fingerprint features at levels 1 and 2. The level 1 
results, obtained by human visual comparison, show that twins finger’s have a higher prob­
ability of having the same classification (42%) than in the case of non-twins (25%). 

Level 2 features were studied using a minutiae-based matching algorithm which provides 
a similarity score. Distributions of scores were compared using the Kolmogorov-Smirnov 
test. The statistical inferences from the level 2 study are: 

1. The distribution of the similarity of corresponding fingerprints of twins is different from 
that between genuine prints of the same finger. 

2. The distribution of similarity of corresponding fingerprints of identical twins is the 
same as that between corresponding fingerprints of fraternal twins. 

3. The distribution of similarity of fingerprints of twins is different from that between 
arbitrary fingers. 

Although friction ridge patterns of corresponding fingerprints of twins are more similar 
than between two arbitrary fingerprints, they are still discriminable using minutiae-based 
algorithms. 

Generative Model of Individuality 

Generative models of individuality attempt to model the distribution of features and then use 
the models to determine the probability of random correspondence. We have proposed such 
models of individuality for birthdays, heights and fingerprints. Individuality is evaluated in 
terms of three probability measures: probability of random correspondence (PRC) between 
two individuals, general probability of random correspondence (nPRC) between two indi­
viduals among a group of n individuals and specific probability of random correspondence 
(specific nPRC) which is the probability of matching a given individual among n individuals. 

We have proposed a generative model for both minutiae and ridge information, featured 
by ridge length and points. We used a mixture distribution to model ridge information. The 
generative model is then compared by implementation and experiments with a generative 
model without ridge information on the FVC2002 DB1. The PRC obtained for a fingerprint 
template and input with 36 minutiae each with 16 matching minutiae is 1.4 × 10−10 . This is 
a much stronger result than without using ridge information which is 5.1 × 10−6 . It has also 
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been observed that the nPRC and specific nPRC values with ridge information are much 
smaller than the PRC values without ridge information. Considering the case of 100000 
fingerprints, the nPRC with ridge information where 26 out of 36 ridges are matched is 
1.5202 × 10−14 instead of 5.3414 × 10−6 without ridge information. Similarly, given a specific 
fingerprint with 26 minutiae, the specific nPRC with ridge information where 14 out of 40 
ridges are matched is 1.1780 × 10−58, which is much smaller than 7.3652 × 10−23 where only 
minutiae is considered. The proposed ridge information model offers a more reasonable and 
more accurate fingerprint representation. The results provide a much stronger argument for 
the individuality of fingerprints in forensics than previous generative models. 

Likelihood Methods for Fingerprint Matching 

Two different approaches to making a verification decision based on the score of a fingerprint 
matcher have been compared. The first, based on obtaining an ROC curveof scores, is a 
standard approach used by the biometrics community. The second is based on determining 
the likelihood ratio obtained from the distribution of scores conditioned upon whether the 
input pair belongs to the same finger or not. A comparison of the two approaches was 
empirically determined using standard fingerprint databases. 

The study was in the context of a variable number of available minutiae. The decision 
methods involve mapping from feature space (minutiae) to distance space (similarity score). 
As the number of minutiae in the samples were reduced, the error rates increased, as ex­
pected, but with the likelihood methods performing significantly better than the ROC-based 
methods. This suggests that LR method for matching is a significantly superior method of 
choice over the ROC method, especially and most usefully so in the regime of small numbers 
of available minutiae. It should be noted that the results are with available numbers of 
minutiae rather than the number of matching minutiae which is expected to be a fraction of 
the available minutiae. 

Representative Ridge Points 

Most automatic fingerprint matching algorithms are based on only using minutiae. Those 
that have been proposed for using ridge information have three major disadvantages : (i) 
sensitivity to non-linear deformation, (ii) high computational complexity and (iii) unscalable 
to partial fingerprint matching. To overcome these disadvantages, we proposed an algorithm 
to utilizes ridge information more effectively– by choosing representative points along the 
ridges. In specific, the chosen ridge points are used, together with minutiae, in existing 
minutiae matching algorithms with modification to benefit from their well–developed tol­
erance to non-linear deformation (for disadvantage (i)). Since the addition of ridge points 
increases computation time significantly, a ridge point selection scheme is proposed, through 
which only one representative ridge point (RRP) is selected per ridge. The actual matching 
run-time is less than twice of original (for disadvantage (ii)). The performance of choosing 
fixed different RRP indices and dynamically selecting hybrid index were tested. Then an 
empirical RRP selection scheme is proposed. Extensive experiments on partial prints (cut 
from full-size prints) demonstrate the stable and significant accuracy improvement when 
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having a large range of numbers of available minutiae (10-35) as input (for disadvantage 
(iii)). Two caveats are: (1) the focus was on the effectiveness of using RRP for fingerprint 
matching when the number of available minutiae decreases in partial fingerprints with fair 
image quality, but not coping with the latent partial fingerprints. Partial fingerprints were 
simulated by cropping full-sized images with fair image quality, and (2) for an existing al­
gorithm, we are comparing its performance with RRP and without RRP as input, but not 
between different algorithms. Even other state-of-the-arts algortihms not tested can be ex­
pected to have better accuracy than themselves when having RRP as input together with 
minutiae. 
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2.3.2 Tables 

The following tables are referred to in the program narrative. 

Table 2.1: False Positive Rate with Twins and Non-twins using Bozorth Matcher. 
FP Error Rate EER Threshold 

Non-Twins 2.91% 18 
Twins 6.17% 26 
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Table 2.2: Samples of twins showing both similarity and dissimilarity at Level 1.


Matching Level 1: Identical twins Non-matching Level 1: Identical twins 

Matching Level 1 - Fraternal twins Non-matching Level 1 - Fraternal twins 
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Table 2.3: Kolmogorov-Smirnov test between different distributions. All distribution pairs, except 
identical vs fraternal, were found to be different from each other. 

Gen v Twin Ident v Frat Twin v Non-Twin Gen v Non-Twins 
K-S(prob) 0.0010 0.9999 0.1174 0.0004 

Table 2.4: Results from the Chi-square tests for testing the goodness of fit of the mixture 
models with and without ridge information. The total number of fingerprints in FVC2002 
DB1 is 800. 

p-value Without Ridge information With Ridge information 
p − value > 0.01 
(Model Accepted) 574 679 
p − value ≤ 0.01 
(Model Rejected) 226 121 
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Table 2.5: PRC for different fingerprint matches with varying m1(number of minutiae/ridges 
in fingerprint f1 ),m2 (number of minutiae/ridges in fingerprint f2) and m̂ (number of 
matched minutiae/ridges) - With ridge information and without ridge information. p� is 
the theoretical PRC for the general population and p̂� is the empirical PRC for FVC2002­
DB1. 
No. query No. temp No. match Minutiae Only Minutiae and Ridges 

m1 m2 m̂ p� p̂� p� p̂� 

16 16 4 2.1 × 10−1 2.1 × 10−1 3.9 × 10−2 1.6 × 10−3 

8 1.1 × 10−2 7.8 × 10−3 1.8 × 10−5 1.7 × 10−8 

12 1.2 × 10−5 5.7 × 10−6 2.0 × 10−10 3.7 × 10−15 

16 4.8 × 10−11 1.6 × 10−11 8.9 × 10−18 3.1 × 10−24 

26 26 6 1.3 × 10−1 1.4 × 10−1 7.4 × 10−3 7.9 × 10−4 

8 3.5 × 10−2 4.3 × 10−2 3.0 × 10−4 1.2 × 10−5 

12 3.6 × 10−4 5.4 × 10−4 6.9 × 10−8 3.8 × 10−10 

16 3.2 × 10−7 6.0 × 10−7 1.4 × 10−12 1.1 × 10−15 

20 2.3 × 10−11 5.3 × 10−11 2.3 × 10−18 2.4 × 10−22 

26 6.7 × 10−21 2.1 × 10−20 2.2 × 10−30 1.2 × 10−35 

36 36 6 1.5 × 10−1 1.7 × 10−1 1.8 × 10−2 4.1 × 10−3 

8 5.8 × 10−2 9.0 × 10−2 1.3 × 10−3 1.4 × 10−4 

12 1.5 × 10−3 4.3 × 10−3 1.1 × 10−6 2.9 × 10−8 

16 5.1 × 10−6 2.8 × 10−5 1.4 × 10−10 8.5 × 10−13 

20 3.1 × 10−9 3.2 × 10−8 3.1 × 10−15 4.2 × 10−18 

26 1.6 × 10−15 4.2 × 10−14 1.1 × 10−23 1.6 × 10−27 

32 5.5 × 10−24 3.8 × 10−22 2.4 × 10−34 4.2 × 10−39 

36 5.6 × 10−32 7.3 × 10−30 8.7 × 10−44 3.6 × 10−49 

46 46 6 1.6 × 10−1 1.6 × 10−1 2.6 × 10−2 1.0 × 10−2 

8 8.1 × 10−2 1.2 × 10−1 2.5 × 10−3 5.5 × 10−4 

12 3.8 × 10−3 1.3 × 10−2 4.2 × 10−6 3.2 × 10−7 

16 2.9 × 10−5 2.4 × 10−4 1.2 × 10−9 3.3 × 10−11 

20 5.2 × 10−8 9.8 × 10−7 7.8 × 10−14 7.4 × 10−16 

26 2.8 × 10−13 1.8 × 10−11 2.9 × 10−21 5.9 × 10−24 

32 6.6 × 10−20 1.5 × 10−17 4.8 × 10−30 2.0 × 10−33 

36 3.5 × 10−25 1.8 × 10−22 9.3 × 10−37 1.3 × 10−40 

42 7.6 × 10−35 1.4 × 10−31 1.4 × 10−48 4.3 × 10−53 

46 1.4 × 10−43 6.1 × 10−40 9.9 × 10−59 1.0 × 10−63 
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Table 2.6: Fingerprint Probabilities: nPRCs with varying m and m̂ given n = 100, 000 
fingerprints 

No. of template No of Minutiae only Minutiae and Ridges 
minutiae/ridges m matches m̂ p(n) p(n) 

46 46 5.0680 × 10−34 6.7329 × 10−49 

36 1.3336 × 10−15 5.9220 × 10−27 

26 1.1842 × 10−3 1.7579 × 10−11 

16 1 1 
6 1 1 

36 36 1.5551 × 10−22 7.5000 × 10−35 

26 5.3414 × 10−6 1.5202 × 10−14 

16 1 3.4852 × 10−1 

6 1 1 
26 26 2.3517 × 10−11 5.9297 × 10−20 

16 1 1.8829 × 10−2 

6 1 1 
16 16 1.3464 × 10−1 4.460 × 10−8 

6 1 1 

Table 2.7: Fingerprint Probabilities: Specific nPRCs for fingerprints in Figure 2.21 with 
n = 100, 000 fingerprints 

Print No. query No. temp No. match Minutiae only Minutiae and Ridge 
f m/r mf m/r m matches m̂ p(n, f) p(n, f) 
F1 41 40 31 3.0327 × 10−78 8.5202 × 10−190 

40 12 5.7637 × 10−14 1.1670 × 10−23 

20 12 1.2995 × 10−18 2.6310 × 10−28 

20 8 8.3699 × 10−8 3.7832 × 10−13 

10 8 2.9899 × 10−11 1.3515 × 10−16 

10 4 6.2829 × 10−1 2.7439 × 10−3 

F2 26 40 20 3.0335 × 10−43 1.0602 × 10−126 

40 14 7.3652 × 10−23 1.1780 × 10−58 

20 12 1.1057 × 10−21 5.9308 × 10−45 

20 8 1.1077 × 10−9 7.4112 × 10−16 

10 8 3.9608 × 10−13 2.6501 × 10−19 

10 4 8.3675 × 10−2 6.6823 × 10−4 

F3 13 40 12 9.1311 × 10−20 6.2913 × 10−72 

20 12 2.0588 × 10−24 1.4185 × 10−76 

20 8 1.0564 × 10−10 2.8852 × 10−25 

10 8 3.7360 × 10−14 1.0204 × 10−28 

10 4 4.1707 × 10−2 1.2057 × 10−3 
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ROC Log-likelihood under 
Database method Gaussian Gamma 

1 4.16% 3.93% 3.93% 
2 6.45% 2.57% 3.65% 
3 14.43% 13.96% 13.96% 
4 6.14% 6.14% 7.24% 

overall 7.79% 6.65% 7.19% 

Table 2.8: Error rates for 1:1 fingerprint verification on the 4 different database.


Randomly removed minutiae Minutiae available in a region 
Available 
Minutiae 

ROC 
Error Rate 

Gamma 
Error Rate 

Gaussian 
Error Rate 

Available 
Minutiae 

ROC 
Error Rate 

Gamma 
Error Rate 

Gaussian 
Error Rate 

46 
41 
36 
31 
26 

5.17±0.02 
5.68±0.02 

17.97±0.11 
13.81±1.10 
50.00±0.00 

3.29±0.07 
4.61±0.04 
6.56±0.11 

10.48±0.19 
27.22±0.17 

3.28±0.08 
4.60±0.05 
6.59±0.09 

10.31±0.21 
16.02±0.24 

45 
40 
35 
30 
25 
20 

5.98±0.05 
6.19±0.20 

18.36±0.19 
19.88±0.79 
19.88±0.79 
50.00±0.00 

3.45±0.06 
4.96±0.18 
7.77±0.16 

13.36±0.13 
13.36±0.13 
29.55±0.30 

3.24±0.03 
4.93±0.20 
7.82±0.15 

13.37±0.20 
13.37±0.20 
29.72±0.35 

Table 2.9: Mean and standard deviation of error rates for all available 800 fingerprint images 
with randomly removed minutiae. 

Table 2.10: Theoretical and estimated run-times of minutiae-based matcher with both minu­
tiae and RRPs as inputs (In the last two rows, run-times for one and two RRPs per ridge 
are from experiments and for more than two RRPs are estimated). 

No. of RRPs selected per Ridge (k) 0 1 2 3 4 5 6 
No. of Minutiae and RRPs (n(1 + k)) n 2n 3n 4n 5n 6n 7n 

Theoretical Ratio(RRP+Min:Min) ((1 + k)3) 1 8 27 64 125 216 343 
Estimated Ratio(RRP+Min:Min) 1 2 8 12 16 20 24 

Actual Run-Time on Intelr Xeontm 2.8GHz 
four processors (secs/match) 

0.20 0.38 1.52 2.4 3.2 4.0 4.8 
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Table 2.11: Equal Error Rates of Full Fingerprint Matching on all the four databases of 
FVC2002 using different RRP indices. 

EER on FVC2002 Database 
DB1 DB2 DB3 DB4 

k-minutiae using Minutiae 1.00 % 1.20 % 8.50 % 3.70 % 
k-minutiae using Minutiae + 1stRRP 0.97 % 1.22 % 7.83 % 3.50 % 
k-minutiae using Minutiae + 2ndRRP 0.79 % 1.05 % 7.08 % 3.43 % 
k-minutiae using Minutiae + 3rdRRP 0.80 % 1.06 % 7.21 % 3.43 % 
k-minutiae using Minutiae + 4thRRP 0.87 % 1.08 % 7.13 % 3.57 % 
k-minutiae using Minutiae + 5thRRP 0.87 % 1.08 % 7.13 % 3.47 % 
k-minutiae using Minutiae + 6thRRP 0.84 % 1.03 % 7.56 % 3.40 % 
k-minutiae using Minutiae + 7thRRP 0.86 % 1.03 % 7.44 % 3.39 % 
k-minutiae using Minutiae + 8thRRP 0.85 % 0.97 % 7.58 % 3.45 % 
k-minutiae using Minutiae + 9thRRP 0.81 % 1.05 % 7.27 % 3.39 % 
k-minutiae using Minutiae + 10thRRP 0.75 % 1.06 % 7.63 % 3.60 % 
k-minutiae using Minutiae + 11thRRP 0.76 % 1.10 % 7.36 % 3.44 % 
k-minutiae using Minutiae + 12thRRP 0.77 % 1.15 % 7.81 % 3.52 % 
k-minutiae using Minutiae + 13thRRP 0.74 % 1.17 % 7.99 % 3.43 % 
k-minutiae using Minutiae + 14thRRP 0.75 % 1.19 % 7.93 % 3.41 % 

Bozorth using Minutiae 3.50 % 3.00 % 8.10 % 3.90 % 
Bozorth using Minutiae + 1stRRP 3.69 % 3.07 % 7.13 % 3.45 % 
Bozorth using Minutiae + 2ndRRP 2.69 % 3.02 % 5.57 % 3.38 % 
Bozorth using Minutiae + 3rdRRP 2.69 % 2.65 % 5.70 % 3.34 % 
Bozorth using Minutiae + 4thRRP 2.85 % 2.68 % 5.91 % 3.29 % 
Bozorth using Minutiae + 5thRRP 2.80 % 2.90 % 6.29 % 3.22 % 
Bozorth using Minutiae + 6thRRP 2.76 % 2.84 % 6.37 % 3.13 % 
Bozorth using Minutiae + 7thRRP 2.52 % 2.21 % 6.35 % 3.39 % 
Bozorth using Minutiae + 8thRRP 2.73 % 2.52 % 6.20 % 3.28 % 
Bozorth using Minutiae + 9thRRP 2.50 % 2.49 % 6.16 % 3.36 % 
Bozorth using Minutiae + 10thRRP 2.34 % 2.80 % 6.06 % 3.55 % 
Bozorth using Minutiae + 11thRRP 2.38 % 2.26 % 6.37 % 3.43 % 
Bozorth using Minutiae + 12thRRP 2.27 % 2.37 % 6.65 % 3.32 % 
Bozorth using Minutiae + 13thRRP 2.49 % 2.86 % 6.67 % 3.58 % 
Bozorth using Minutiae + 14thRRP 2.86 % 2.77 % 6.89 % 3.41 % 

Table 2.12: Equal Error Rates of Full Fingerprint Matching on all the four databases of 
FVC2002 using hybrid RRP index. 

EER on FVC2002 Database 
DB1 DB2 DB3 DB4 

k-minutiae using Minutiae + hybrid RRP 0.70 % 0.95 % 6.37 % 3.37 % 
Bozorth using Minutiae + hybrid RRP 2.20 % 2.18 % 6.10 % 3.14 % 
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Table 2.13: Partial Fingerprint Verification EERs on simulated partial fingerprints generated 
from FVC2002 Databases. ’M’ is used to denote minutiae in column 3.) 

Selected Data Feature Used Number of available minutiae in partial prints 
Matcher Set For Matching 10 15 20 25 30 35 

DB 1 M 20.70% 14.55% 9.72% 8.02% 6.11% 5.13% 
M+RRP 19.39% 11.74% 7.95% 5.60% 4.80% 3.65% 

DB 2 M 21.90% 15.18% 12.74% 10.10% 8.17% 6.75% 
Bozorth M+RRP 20.59% 14.57% 9.94% 8.61% 7.13% 5.09% 

DB 3 M 34.22% 25.28% 20.29% 17.80% 14.48% 12.76% 
M+RRP 32.30% 23.04% 18.09% 14.39% 11.08% 9.36% 

DB 4 M 22.67% 17.55% 11.93% 9.05% 7.29% 6.25% 
M+RRP 21.96% 15.04% 9.77% 7.05% 4.52% 3.77% 

DB 1 M 19.79% 11.23% 7.416% 4.84% 3.23% 2.41% 
M+RRP 17.33% 5.983% 3.914% 2.74% 1.92% 1.53% 

DB 2 M 21.75% 14.74% 9.96% 8.11% 6.59% 5.21% 
K-Plet M+RRP 18.74% 12.11% 8.57% 6.40% 5.67% 4.51% 

DB 3 M 32.96% 27.74% 21.04% 16.3% 14.10% 10.76% 
M+RRP 31.21% 20.01% 15.2% 12.33% 10.21% 9.02% 

DB 4 M 25.32% 17.90% 11.60% 7.97% 5.95% 5.01% 
M+RRP 23.76% 15.80% 10.20% 6.99% 5.46% 4.95% 
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2.3.3 Figures 

Following are figures referred to in the narrative. 

(a) (b) (c) 

(d) (e) 

Figure 2.1: Examples of five main types of ridge flow in fingerprints, referred to as Level 1 
features: (a) arch, (b) left loop, (c) right loop. (d) tented arch, and (e) whorl. From NIST 
Special Database 4. 
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(a) (b) 

Figure 2.2: Representation of fingerprints using minutiae: (a) locations of ridge endings and ridge 
bifurcations are indicated by circles, and (b) minutiae directions are indicated by line segments in 
a skeletonized fingerprint image. 

(a) Minutia pair (b) Minutia triplet (c) k-minutiae 

Figure 2.3: Local minutiae models consider the relative positions of: (a) pair of minutiae (b) triple 
of minutiae, and (c) k minutiae (5 in this case). 
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Fingerprint Individuality Models

Grid Models

Fixed Probability Models

Ridge Models

Relative Measurement Models

Generative Models

Galton

Osterburgh

Henry

Balthazard

Bose

Wentworth and Wilder

Cummins and Midlo

Gupta

Roxburgh

Trauring

Champod and Margot

Mixture Model: Minutiae Only

Mixture Model: Minutiae and Ridges

Mixture Model: Hypergeometric and Binomial

Mixture Model: Gaussian and Von-Mises

Figure 2.4: Taxonomy of fingerprint individuality models based on method of analysis. The 
generative models studied in this research are at the bottom right. 
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(a) (b)


Figure 2.5: Fingerprints from a pair of twins.


Figure 2.6: 10 Rolled fingerprints from one individual.


Figure 2.7: Distribution of ages of twins in database: a predominance of younger ages is seen.
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(a) Hair Color Distribution (b) Gender Distribution 

(c) Race Distribution (d) Handedness Distribution 

Figure 2.8: Distribution of twins meta data: (a) hair color (b) gender (c) race (d) handedness 
(left/right). 

13%

5%

30%

27%

19%

7%
DISTRIBUTION OF LEVEL 1 CLASSIFICATION IN FINGER PRINTS

Arch
Tented Arch
Right loop
Left loop
Whorl
Twin loop

Figure 2.9: Distribution of level 1 features in database
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Figure 2.10: Methodology of comparing fingerprints of twins and non-twins using Level 2 features.
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(c) Histogram of identical twins 
distribution(I) 
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(d) Histogram of fraternal twins 
distribution(F) 
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Figure 2.11: Histograms of AFIS scores (using a Bozorth matcher): (a) twins, (b) non-twins (c) 
identical twins, (d) fraternal twins, and (e) genuine. Note that the first four (a),(b),(c) and (d) are 
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Figure 2.12: Probability density functions of fingerprint scores modeled as gamma distributions.
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(a) (b) (c) 

(d) (e) (f) 

Figure 2.13: Distribution of minutia location for different types of ridge flow: (a) arch, (b) 
left loop, (c) right loop, (d) tent, (e) whorl, and (e) all types combined. 
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(a) (b) 

(c) (d) 

Figure 2.14: Model for minutiae distribution using Gaussian mixture for location and von 
Mises for direction: (a) Gaussian mixture model for minutia location with three components, 
(b) three-dimensional plot of mixture model, (c) von Mises distributions of minutiae orien­
tation for each of the three components, where the green curve corresponds to the upper 
cluster, blue the lower left cluster and red the lower right cluster, and (d) sample generated 
from model. 
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Figure 2.15: Mixture model for distribution of minutiae x = (s, θ). The joint distribution of 
minutia location and orientation is given by p((s, θ), z) = p(z)p(s|z)p(θ|z). 
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Figure 2.16: Representation of fingerprints using minutiae and ridge information: similarity 
of ridge shapes allows the matching of corresponding minutiae pair. Three fingerprints are 
shown, two of which are similar and one dissimilar. Minutiae m1 and m2 in fingerprints 1 
and 2 are similar since not only their locations are similar but also the associated ridges r1 

and r2 are similar. However, minutiae m3 in fingerprint 3 has a location similar to m1 and 
m2 but the associated ridge r3 is dissimilar to r1 and r2. 

Figure 2.17: Representation of ridge points in polar coordinates. The minutia at the center 
is the origin. The sixth ridge point from the minutia is represented by ((r, φ), θ), where r 
and φ are polar coordinates of its location and its direction θ is the angle the tangent at the 
ridge point makes with the horizontal. 
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Figure 2.18: Graphical model for representative ridges. The distribution of ridge points xr 

are dependent on the defining minutia xm. Both are dependent on ridge length lr. 

(a) (b) 

Figure 2.19: Graphical models representing mixture for: (a) single minutia whose distribu­
tion is expressed as p(x, z) = p(x)p(x|z), (b) set of D identically distributed minutiae with 
corresponding latent points zn, where n = 1, .., D. 
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Figure 2.20: PRCs with different number of the matched ridges for (a) m = 6, (b) m = 16, 
(c) m = 26, and (d) m = 36. 

Figure 2.21: Three specific fingerprints (from the same finger) used to calculate probabilities: 
(a) good quality full print, (b) low quality full print, and (c) partial print. 
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Figure 2.22: ROC Method: (a) Scatter plot of scores for large ensemble of pairs of samples using 
Bozorth matcher and (b) ROC obtained by moving the threshold in (a). 
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Figure 2.23: Likelihood Ratio Method: (a) Raw scores corresponding to different fingerprint 
pairs, and (b) histogram of the distribution of scores of same and different finger pairs. The 
fingerprint scores were first binned into 20 equally spaced bins. The centers of these bins are 
the x-axis values. The y-axis is the count of how many scores fell in that bin. 
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Figure 2.24: Two plots show modeling the histogram in Figure 2.23 using Gaussian(left) and 
Gamma(right) distributions. 

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

Similarity score

p.
d.

f. 
va

lu
e

Modelling with Gaussian distribution

Same finger
Different finger

d 

P(d/Df) 

P(d/Ds) 

Lilihood ratio = P(d/Ds) / P(d/Dd) 

(a) Verification: Two finger print samples are (b) PDF value of the Gaussian distributions 
verified whether they belong to the same fin- at d 
ger. 

Figure 2.25: The score between the two samples to be verified is obtained from the Bozorth 
matcher to be d. The p.d.f. value of the two distributions at d is calculated. 
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(a) 8 samples for one finger.	 (b) One sample from each of 10 different fin­
gers. 

Figure 2.26: (a) Samples from one finger. (b) Samples from different fingers. All these 
samples were from database 1 of the FVC2002 dataset. 
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Figure 2.27: Variation in the error rates for 1:1 verification for each of the 4 databases with 
the average number of minutiae available per sample (after random removal). The last data 
point in each of the database corresponds to the case where no minutiae were removed. 
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Figure 2.28: Variation in the error rates 1:1 verification for each of the 4 databases with the 
average number of minutiae available per sample (corresponding to a region). 
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Figure 2.29: ROC curves obtained from the training set for each of the 4 databases.


0 100 200 300
0

0.02

0.04

0.06

0.08

0.1

0.12

Similarity score

p.
d.

f. 
va

lu
e

Gaussian distribution Db1

Same finger
Different finger

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

Similarity score

p.
d.

f. 
va

lu
e

Gaussian distribution Db2

Same finger
Different finger

0 50 100 150
0

0.05

0.1

0.15

0.2

Similarity score

p.
d.

f. 
va

lu
e

Gaussian distribution Db3

Same finger
Different finger

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

Similarity score

p.
d.

f. 
va

lu
e

Gaussian distribution Db4

Same finger
Different finger

Larger overlap 

Smaller overlap 

Figure 2.30: The distribution of similarity scores for each of the 4 databases modelled with 
Gaussian distribution. 
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minutiae tiae from a region 

Figure 2.31: Error rates for a database of 800 fingerprint images 
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(a) (b) (c) 

Figure 2.32: Ridge similarity: (a) minutiae and associated ridges (represented by points sampled 
at average inter-ridge distance), (b) false alignment with similar ridge pair (beyond the tolerance of 
an adaptively compensating minutiae matching algorithm), and (c) region sizes of local similarity 
models of three minutiae matchers: A(lower left blue box): Bozorth minutiae pair, B(small red 
box): triplet model [52], C(top green box): k-minutiae model. D(black): labels a ridge. 
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(a) A ridge in Fingerprint I. (b) A ridge in Fingerprint II. (After aligned to Fingerprint 
I. through affine transformation) 

Figure 2.33: Importance of using ridge information in additional to minutiae. Ridge A and Ridge 
B are respectively from two fingerprints I and II. After fingerprint II is aligned to fingerprint I 
through affine transformation, minutia B and minutia A share very similar location and orientation 
(the (x, y, θ) values are within tolerance (5, 5, 10o)). The first three ridge point pairs on the two 
ridges are also similar (within tolerance (5, 5, 10o)). However, because the shapes of Ridge A and 
Ridge B are totally different from each other (also could be sensed from the large differences of 
the 6th ridge point pair and the 12th ridge point pair), we should reject these two ridges as being 
identical. 
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Figure 2.34: Effect of number of input minutiae on: (i) number of minutiae that match with 
the genuine full print (top half of chart), and (ii) equal error rate (EER) (bottom half of 
chart). As the number of minutiae increases, the number of matched minutiae increases and 
the EER decreases. The partial images were generated from images in FVC2002– data sets 
DB1 and DB3. The average number of minutiae of full fingerprints in DB1 and DB3, as 
detected by MINDTCT [11], were 43 and 53 respectively. 
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Figure 2.35: Partial fingerprints: (a) a full fingerprint image, and (b)-(f) partial fingerprint 
images cut from the full fingerprint with decreasing numbers of minutiae (35, 30, 25, 20, and 
15). Note: In this paper, we are focusing on the effectiveness of using RRP for fingerprint 
matching when number of available minutiae decreases in partial fingerprints with fair image 
quality, but not coping with the latent partial fingerprints in real forensic cases with very 
poor quality. So, we simulate partial fingerprints by cropping full-sized images with fair 
image quality. 

(a) (b) (c) 

Figure 2.36: Representative Ridge Points: (a) genuine fingerprints have overlapping minutiae and 
ridges, (b) minutiae (circles) and RRPs (squares). As an example, the 6th and 12th RRPs are shown; 
regions without minutiae are now characterized by RRPs. (c) Ridge endings, ridge bifurcations and 
RRPs. 
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(a) (b) 

(c) 

Figure 2.37: Implication from minutiae and the kth ridge points to ridge segment. (a) a ridge with 
minutia and ridge points, (b) the kth ridge point is selected as RRP, (c) four possible candidate 
shapes of the ridge segment with fixed segment length kd and fixed positions of both the two 
end points. Please note that, in (c), we are only considering the four possible candidates because 
we only care about the approximate ridge shape types. Slight shakes on ridge shapes are not 
interesting here because, given the existence of non-linear deformation in fingerprint impressions, 
it is irrational and impossible to use a strict criterion such as ridge similarity to say whether two 
ridges are identical or not. Instead, we use the basic ridge type (e.g. one/two turn) to classify all 
possible ridges connecting a minutia and a ridge point. Admittedly, there might be other possible 
ridge shape types, e.g. in core and delta region, ridges may have very sharp turns or more than 
two turns. However, in most cases, fingerprint ridges are smooth flowing patterns with seldom 
sharp turns, and unlikely have more than three turns. So, we are only considering the four possible 
candidates here. 
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(a) Original finger- (b) Enhancement 
print image and binarization 

(c) Thinning (d) Minutiae de­
tection 

(e) Ridge points 
detection 

(f) RRP selection 

Figure 2.38: Processing steps in extracting RRPs from original fingerprint images.
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Figure 2.39: Ridge length statistics for the FVC2002 data sets. For each dataset, mean and 
standard deviation(Std),median and interquartile range(IQR) are shown. The horizontal 
line for each bar marks the average length or the median of ridge length, and the vertical bar 
depicts plus and minus the Std or the IQR (the range between 75% quartile (upper quartile) 
and 25% quartile (lower quartile)). 

(a) Bozorth (b) K-minutiae 

Figure 2.40: Equal Error Rate comparison using single RRP with pre-determined index on 
FVC2002 data set (this result is corresponding to Table 2.11). For all data sets, RRP index 
ranges from 2 to 14. Compared with only minutiae are used (RRP index = 0), both Bozorth and 
k-minutiae are improved by adding RRP. 
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(a) DB1 (b) DB2 

(c) DB3 (d) DB4 

Figure 2.41: ROCs of full fingerprint matching with the four databases DB1-DB4 in FVC2002. 
The four curves correspond to pairwise matching (Bozorth) and k minutiae matching (CBFS) with 
and without RRPs. In each case the ROC of minutiae+RRPs (dot and dashdot) is fully above the 
ROC of minutiae only (solid). 
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(a) DB1 (b) DB2 

(c) DB3 (d) DB4


Figure 2.42: EER vs Number of Available Minutiae in Partial Fingerprint Matching.
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2.4 Conclusions 

2.4.1 Discussion of Findings 

There is more similarity between friction ridges of corresponding fingers of twins than in the 
case of two arbitrary fingers. However, such pairs of twin fingerprints can be successfully 
discriminated using minutiae-based fingerprint algorithms. There is no significant difference 
between the fingerprints of identical and fraternal twins. 

The probability of random correspondence between fingerprints can be characterized in 
terms of the number of available minutiae and the number of matching minutiae. For instance 
In the case of both input and template having 36 minutiae with 16 matching minutiae, this 
probability is 1.4 in 10 billion. This probability was calculated using both minutiae and ridge 
information which is much lower than using minutiae alone. The probabilities can also be 
expressed in terms of some pair of matching fingerprints in databases of given size. Given a 
database of 100,000 fingerprints, and for specific fingerprints the probabilities were calculated 
and were found to be very small, e.g., for a fingerprint with 26 minutiae the probability of 
matching 12 minutiae in a database of 100,000 fingerprints is 10−45 . 

The use of likelihood methods results in noticeable improvement over decision based on 
ROC curves. 

Ridge points can be represented in a manner similar to minutiae, using x, y and θ values, 
thereby improving the performance of matching algorithms 

2.4.2 Implications for Policy and Practice 

The net result of both the twin’s study and the generative model study is that the ar­
gument for the individuality of fingerprints is strengthened. The probability of random 
correspondence can be used in support of admitting fingerprint evidence in courts provided 
the fingerprints are clear enough to have a certain number of features (minutiae and ridges) 
in them. 

AFIS algorithms can get a small improvement in performance by utilizing likelihood 
ratios derived from distributions of scores rather than directly using ROC curves. 

AFIS algorithms can get significant improvement in performance by using ridge points 
in addition to minutiae without significant degradation in matching speed. 

2.4.3 Implications for Further Research 

The twin’s study can be extended to larger data sets and to palm prints. 
The generative model can be derived from a larger data set and compared to the present 

model. 
Further improvement in likelihood decision performance is possible by using mixture 

models or more robust distributions such as Student-t distributions. 
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Chapter 3


References


The references in the Program Narrative are given below. The references are in the order in 
which they are referred to in the text. 
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